基于挑战感知的U-net超声图像乳腺病灶分割

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Dengdi Sun , Changxu Dong , Yuchen Yan , Bo Jiang , Yayang Duan , Zhengzheng Tu , Chaoxue Zhang
{"title":"基于挑战感知的U-net超声图像乳腺病灶分割","authors":"Dengdi Sun ,&nbsp;Changxu Dong ,&nbsp;Yuchen Yan ,&nbsp;Bo Jiang ,&nbsp;Yayang Duan ,&nbsp;Zhengzheng Tu ,&nbsp;Chaoxue Zhang","doi":"10.1016/j.patcog.2025.111851","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning methods can enhance the efficiency of tumor segmentation in breast ultrasound (BUS) images. However, noise interference, small tumors, and blurred boundaries can reduce segmentation accuracy. We design a three-branch challenge-aware U-net (CAU-net) to address these main challenges in BUS images. Our CAU-net extracts the features from three challenge-aware encoders in parallel first. Secondly, we propose an adaptive aggregation layer (AAL) to merge the multi-scale features of three challenging branches, enabling the network to adaptively handle different breast lesion samples with these main challenges. To further enhance the accuracy of segmentation, we introduce the graph reasoning module (GRM) to the network to model the correlation between the channels of the features and acquire the global information in the features. The result of our experiment on two datasets demonstrates the superiority of CAU-net over the advanced medical image segmentation methods. Our code can be downloaded from <span><span>https://github.com/tzz-ahu</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"168 ","pages":"Article 111851"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Challenge-aware U-net for breast lesion segmentation in ultrasound images\",\"authors\":\"Dengdi Sun ,&nbsp;Changxu Dong ,&nbsp;Yuchen Yan ,&nbsp;Bo Jiang ,&nbsp;Yayang Duan ,&nbsp;Zhengzheng Tu ,&nbsp;Chaoxue Zhang\",\"doi\":\"10.1016/j.patcog.2025.111851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep learning methods can enhance the efficiency of tumor segmentation in breast ultrasound (BUS) images. However, noise interference, small tumors, and blurred boundaries can reduce segmentation accuracy. We design a three-branch challenge-aware U-net (CAU-net) to address these main challenges in BUS images. Our CAU-net extracts the features from three challenge-aware encoders in parallel first. Secondly, we propose an adaptive aggregation layer (AAL) to merge the multi-scale features of three challenging branches, enabling the network to adaptively handle different breast lesion samples with these main challenges. To further enhance the accuracy of segmentation, we introduce the graph reasoning module (GRM) to the network to model the correlation between the channels of the features and acquire the global information in the features. The result of our experiment on two datasets demonstrates the superiority of CAU-net over the advanced medical image segmentation methods. Our code can be downloaded from <span><span>https://github.com/tzz-ahu</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":\"168 \",\"pages\":\"Article 111851\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320325005114\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325005114","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

深度学习方法可以提高乳腺超声图像中肿瘤分割的效率。然而,噪声干扰、小肿瘤和模糊的边界会降低分割的准确性。我们设计了一个三分支挑战感知U-net (CAU-net)来解决总线图像中的这些主要挑战。我们的cac -net首先并行地从三个挑战感知编码器中提取特征。其次,我们提出了一个自适应聚合层(AAL)来合并三个挑战分支的多尺度特征,使网络能够自适应地处理不同的乳腺病变样本。为了进一步提高分割的精度,我们在网络中引入了图推理模块(GRM),对特征通道之间的相关性进行建模,获取特征中的全局信息。我们在两个数据集上的实验结果表明了cac -net相对于先进的医学图像分割方法的优越性。我们的代码可以从https://github.com/tzz-ahu下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Challenge-aware U-net for breast lesion segmentation in ultrasound images
Deep learning methods can enhance the efficiency of tumor segmentation in breast ultrasound (BUS) images. However, noise interference, small tumors, and blurred boundaries can reduce segmentation accuracy. We design a three-branch challenge-aware U-net (CAU-net) to address these main challenges in BUS images. Our CAU-net extracts the features from three challenge-aware encoders in parallel first. Secondly, we propose an adaptive aggregation layer (AAL) to merge the multi-scale features of three challenging branches, enabling the network to adaptively handle different breast lesion samples with these main challenges. To further enhance the accuracy of segmentation, we introduce the graph reasoning module (GRM) to the network to model the correlation between the channels of the features and acquire the global information in the features. The result of our experiment on two datasets demonstrates the superiority of CAU-net over the advanced medical image segmentation methods. Our code can be downloaded from https://github.com/tzz-ahu.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信