Amitsur-Small环

IF 0.8 2区 数学 Q2 MATHEMATICS
Adam Chapman , Elad Paran
{"title":"Amitsur-Small环","authors":"Adam Chapman ,&nbsp;Elad Paran","doi":"10.1016/j.jalgebra.2025.04.049","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>D</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span> denote the ring of polynomials in <em>n</em> central variables over a division ring <em>D</em>. We say that <em>D</em> is an <em>Amitsur-Small ring</em> if for any maximal left ideal in <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, <span><math><mi>M</mi><mo>∩</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is a maximal left ideal in <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, for all <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span> and <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi></math></span>. We demonstrate the existence of non Amitsur-Small division rings, providing a negative answer to a question of Amitsur and Small from 1978. We show that Hamilton's real quaternion algebra <span><math><mi>H</mi><mo>=</mo><msub><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn><mo>,</mo><mi>R</mi></mrow></msub></math></span> is an Amitsur-Small ring, division rings of degree 3 over their center <em>F</em> are never Amitsur-Small, and division rings of degree 2 are not Amitsur-Small if they are not quaternion algebras <span><math><msub><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn><mo>,</mo><mi>F</mi></mrow></msub></math></span> over a Pythagorean field <em>F</em>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"679 ","pages":"Pages 86-95"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amitsur-Small rings\",\"authors\":\"Adam Chapman ,&nbsp;Elad Paran\",\"doi\":\"10.1016/j.jalgebra.2025.04.049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>D</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span> denote the ring of polynomials in <em>n</em> central variables over a division ring <em>D</em>. We say that <em>D</em> is an <em>Amitsur-Small ring</em> if for any maximal left ideal in <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, <span><math><mi>M</mi><mo>∩</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is a maximal left ideal in <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, for all <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span> and <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi></math></span>. We demonstrate the existence of non Amitsur-Small division rings, providing a negative answer to a question of Amitsur and Small from 1978. We show that Hamilton's real quaternion algebra <span><math><mi>H</mi><mo>=</mo><msub><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn><mo>,</mo><mi>R</mi></mrow></msub></math></span> is an Amitsur-Small ring, division rings of degree 3 over their center <em>F</em> are never Amitsur-Small, and division rings of degree 2 are not Amitsur-Small if they are not quaternion algebras <span><math><msub><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn><mo>,</mo><mi>F</mi></mrow></msub></math></span> over a Pythagorean field <em>F</em>.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"679 \",\"pages\":\"Pages 86-95\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325002844\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325002844","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

令Rn=D[x1,…,xn]表示除法环D上有n个中心变量的多项式环。如果对于Rn中的任何极大左理想,M∩Rk是Rk中的极大左理想,且对于所有n∈n且1≤k≤n,则D是一个amitur - small环。我们证明了非Amitsur-Small除法环的存在性,对1978年的一个Amitsur和Small问题给出了否定的答案。我们证明了Hamilton的实四元数代数H=(- 1, - 1)2,R是一个amitur - small环,3次的除法环在其中心F上绝不是amitur - small, 2次的除法环如果不是四元数代数(- 1,- 1)2,F在毕达哥拉域F上就不是amitur - small。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Amitsur-Small rings
Let Rn=D[x1,,xn] denote the ring of polynomials in n central variables over a division ring D. We say that D is an Amitsur-Small ring if for any maximal left ideal in Rn, MRk is a maximal left ideal in Rk, for all nN and 1kn. We demonstrate the existence of non Amitsur-Small division rings, providing a negative answer to a question of Amitsur and Small from 1978. We show that Hamilton's real quaternion algebra H=(1,1)2,R is an Amitsur-Small ring, division rings of degree 3 over their center F are never Amitsur-Small, and division rings of degree 2 are not Amitsur-Small if they are not quaternion algebras (1,1)2,F over a Pythagorean field F.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信