泊松pseudoalgebras

IF 0.8 2区 数学 Q2 MATHEMATICS
Bojko Bakalov , Ju Wang
{"title":"泊松pseudoalgebras","authors":"Bojko Bakalov ,&nbsp;Ju Wang","doi":"10.1016/j.jalgebra.2025.04.044","DOIUrl":null,"url":null,"abstract":"<div><div>For any cocommutative Hopf algebra <em>H</em> and a left <em>H</em>-module <em>V</em>, we construct an operad <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>H</mi></mrow><mrow><mi>c</mi><mi>l</mi></mrow></msubsup><mo>(</mo><mi>V</mi><mo>)</mo></math></span>, which in the special case when <em>H</em> is the algebra of polynomials in one variable reduces to the classical operad <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>c</mi><mi>l</mi></mrow></msup><mo>(</mo><mi>V</mi><mo>)</mo></math></span> of <span><span>[5]</span></span>. Morphisms from the Lie operad to <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>c</mi><mi>l</mi></mrow></msup><mo>(</mo><mi>V</mi><mo>)</mo></math></span> correspond to Poisson vertex algebra structures on <em>V</em>. Likewise, our operad <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>H</mi></mrow><mrow><mi>c</mi><mi>l</mi></mrow></msubsup><mo>(</mo><mi>V</mi><mo>)</mo></math></span> gives rise to the notion of a Poisson pseudoalgebra; thus extending the notion of a Lie pseudoalgebra from <span><span>[1]</span></span>. As a byproduct of our construction, we introduce two cohomology theories for Poisson pseudoalgebras, generalizing the variational and classical cohomology of Poisson vertex algebras.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"679 ","pages":"Pages 117-168"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poisson pseudoalgebras\",\"authors\":\"Bojko Bakalov ,&nbsp;Ju Wang\",\"doi\":\"10.1016/j.jalgebra.2025.04.044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For any cocommutative Hopf algebra <em>H</em> and a left <em>H</em>-module <em>V</em>, we construct an operad <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>H</mi></mrow><mrow><mi>c</mi><mi>l</mi></mrow></msubsup><mo>(</mo><mi>V</mi><mo>)</mo></math></span>, which in the special case when <em>H</em> is the algebra of polynomials in one variable reduces to the classical operad <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>c</mi><mi>l</mi></mrow></msup><mo>(</mo><mi>V</mi><mo>)</mo></math></span> of <span><span>[5]</span></span>. Morphisms from the Lie operad to <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>c</mi><mi>l</mi></mrow></msup><mo>(</mo><mi>V</mi><mo>)</mo></math></span> correspond to Poisson vertex algebra structures on <em>V</em>. Likewise, our operad <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>H</mi></mrow><mrow><mi>c</mi><mi>l</mi></mrow></msubsup><mo>(</mo><mi>V</mi><mo>)</mo></math></span> gives rise to the notion of a Poisson pseudoalgebra; thus extending the notion of a Lie pseudoalgebra from <span><span>[1]</span></span>. As a byproduct of our construction, we introduce two cohomology theories for Poisson pseudoalgebras, generalizing the variational and classical cohomology of Poisson vertex algebras.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"679 \",\"pages\":\"Pages 117-168\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325002820\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325002820","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于任意协交换Hopf代数H和左H模V,我们构造了一个运算符PHcl(V),在特殊情况下,当H是一元多项式代数时,它简化为[5]的经典运算符Pcl(V)。从李操作符到Pcl(V)的态射对应于V上的泊松顶点代数结构。同样,我们的操作符PHcl(V)产生了泊松伪代数的概念;从而推广了李伪代数的概念。作为我们构造的副产品,我们引入了泊松伪代数的两个上同调理论,推广了泊松顶点代数的变分上同调和经典上同调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poisson pseudoalgebras
For any cocommutative Hopf algebra H and a left H-module V, we construct an operad PHcl(V), which in the special case when H is the algebra of polynomials in one variable reduces to the classical operad Pcl(V) of [5]. Morphisms from the Lie operad to Pcl(V) correspond to Poisson vertex algebra structures on V. Likewise, our operad PHcl(V) gives rise to the notion of a Poisson pseudoalgebra; thus extending the notion of a Lie pseudoalgebra from [1]. As a byproduct of our construction, we introduce two cohomology theories for Poisson pseudoalgebras, generalizing the variational and classical cohomology of Poisson vertex algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信