{"title":"泊松pseudoalgebras","authors":"Bojko Bakalov , Ju Wang","doi":"10.1016/j.jalgebra.2025.04.044","DOIUrl":null,"url":null,"abstract":"<div><div>For any cocommutative Hopf algebra <em>H</em> and a left <em>H</em>-module <em>V</em>, we construct an operad <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>H</mi></mrow><mrow><mi>c</mi><mi>l</mi></mrow></msubsup><mo>(</mo><mi>V</mi><mo>)</mo></math></span>, which in the special case when <em>H</em> is the algebra of polynomials in one variable reduces to the classical operad <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>c</mi><mi>l</mi></mrow></msup><mo>(</mo><mi>V</mi><mo>)</mo></math></span> of <span><span>[5]</span></span>. Morphisms from the Lie operad to <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>c</mi><mi>l</mi></mrow></msup><mo>(</mo><mi>V</mi><mo>)</mo></math></span> correspond to Poisson vertex algebra structures on <em>V</em>. Likewise, our operad <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>H</mi></mrow><mrow><mi>c</mi><mi>l</mi></mrow></msubsup><mo>(</mo><mi>V</mi><mo>)</mo></math></span> gives rise to the notion of a Poisson pseudoalgebra; thus extending the notion of a Lie pseudoalgebra from <span><span>[1]</span></span>. As a byproduct of our construction, we introduce two cohomology theories for Poisson pseudoalgebras, generalizing the variational and classical cohomology of Poisson vertex algebras.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"679 ","pages":"Pages 117-168"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poisson pseudoalgebras\",\"authors\":\"Bojko Bakalov , Ju Wang\",\"doi\":\"10.1016/j.jalgebra.2025.04.044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For any cocommutative Hopf algebra <em>H</em> and a left <em>H</em>-module <em>V</em>, we construct an operad <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>H</mi></mrow><mrow><mi>c</mi><mi>l</mi></mrow></msubsup><mo>(</mo><mi>V</mi><mo>)</mo></math></span>, which in the special case when <em>H</em> is the algebra of polynomials in one variable reduces to the classical operad <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>c</mi><mi>l</mi></mrow></msup><mo>(</mo><mi>V</mi><mo>)</mo></math></span> of <span><span>[5]</span></span>. Morphisms from the Lie operad to <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>c</mi><mi>l</mi></mrow></msup><mo>(</mo><mi>V</mi><mo>)</mo></math></span> correspond to Poisson vertex algebra structures on <em>V</em>. Likewise, our operad <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>H</mi></mrow><mrow><mi>c</mi><mi>l</mi></mrow></msubsup><mo>(</mo><mi>V</mi><mo>)</mo></math></span> gives rise to the notion of a Poisson pseudoalgebra; thus extending the notion of a Lie pseudoalgebra from <span><span>[1]</span></span>. As a byproduct of our construction, we introduce two cohomology theories for Poisson pseudoalgebras, generalizing the variational and classical cohomology of Poisson vertex algebras.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"679 \",\"pages\":\"Pages 117-168\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325002820\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325002820","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
For any cocommutative Hopf algebra H and a left H-module V, we construct an operad , which in the special case when H is the algebra of polynomials in one variable reduces to the classical operad of [5]. Morphisms from the Lie operad to correspond to Poisson vertex algebra structures on V. Likewise, our operad gives rise to the notion of a Poisson pseudoalgebra; thus extending the notion of a Lie pseudoalgebra from [1]. As a byproduct of our construction, we introduce two cohomology theories for Poisson pseudoalgebras, generalizing the variational and classical cohomology of Poisson vertex algebras.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.