Rongquan Zhang , Siqi Bu , Yuxia Zheng , Gangqiang Li , Xiupeng Wan , Qiangqiang Zeng , Min Zhou
{"title":"基于变压器- lstm的风电预测多任务学习模型","authors":"Rongquan Zhang , Siqi Bu , Yuxia Zheng , Gangqiang Li , Xiupeng Wan , Qiangqiang Zeng , Min Zhou","doi":"10.1016/j.ijepes.2025.110732","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of multi-task learning into multi-step deterministic and probabilistic prediction frameworks plays a pivotal role in augmenting the accuracy of wind power forecasts and mitigating associated operational uncertainties. Current wind power forecasting research usually focuses on single-task deterministic forecasting, but there is less research on multi-task learning for multi-step deterministic and probabilistic forecasting. To achieve this, a novel multi-task learning model based on Transformer-Long short-term memory (LSTM) for multi-step deterministic and probabilistic wind power forecasting. First, a novel deep learning hybrid approach (DLH) based on the dilated causal convolutional network, Transformer, LSTM, and L2 regularization is proposed to extract multi-dimensional and complex nonlinear features of wind power time series. Then, the DLH is introduced into the task-sharing layer of the multi-task learning model for multi-step deterministic prediction. In addition, a probabilistic forecasting model that integrates the proposed multi-task learning model and quantile regression is formulated to describe the forecast uncertainty of wind power. Finally, to improve the prediction accurateness, a new heuristic algorithm, namely hybrid Cauchy mutation-based Elk herd and sand cat swarm optimization, is proposed to optimize the model hyperparameters. The proposed deterministic and probabilistic forecasting models have been applied to operational datasets from a northwest China wind farm. Compared to 23 state-of-the-art deterministic models, the proposed model reduces the mean absolute error by a minimum of 0.3174 and a maximum of 9.190, with an average reduction of 2.278. Experimental outcomes also substantiate that the proposed probabilistic model exhibits superior interval sharpness when juxtaposed against six advanced benchmarks.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"169 ","pages":"Article 110732"},"PeriodicalIF":5.0000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel multi-task learning model based on Transformer-LSTM for wind power forecasting\",\"authors\":\"Rongquan Zhang , Siqi Bu , Yuxia Zheng , Gangqiang Li , Xiupeng Wan , Qiangqiang Zeng , Min Zhou\",\"doi\":\"10.1016/j.ijepes.2025.110732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The integration of multi-task learning into multi-step deterministic and probabilistic prediction frameworks plays a pivotal role in augmenting the accuracy of wind power forecasts and mitigating associated operational uncertainties. Current wind power forecasting research usually focuses on single-task deterministic forecasting, but there is less research on multi-task learning for multi-step deterministic and probabilistic forecasting. To achieve this, a novel multi-task learning model based on Transformer-Long short-term memory (LSTM) for multi-step deterministic and probabilistic wind power forecasting. First, a novel deep learning hybrid approach (DLH) based on the dilated causal convolutional network, Transformer, LSTM, and L2 regularization is proposed to extract multi-dimensional and complex nonlinear features of wind power time series. Then, the DLH is introduced into the task-sharing layer of the multi-task learning model for multi-step deterministic prediction. In addition, a probabilistic forecasting model that integrates the proposed multi-task learning model and quantile regression is formulated to describe the forecast uncertainty of wind power. Finally, to improve the prediction accurateness, a new heuristic algorithm, namely hybrid Cauchy mutation-based Elk herd and sand cat swarm optimization, is proposed to optimize the model hyperparameters. The proposed deterministic and probabilistic forecasting models have been applied to operational datasets from a northwest China wind farm. Compared to 23 state-of-the-art deterministic models, the proposed model reduces the mean absolute error by a minimum of 0.3174 and a maximum of 9.190, with an average reduction of 2.278. Experimental outcomes also substantiate that the proposed probabilistic model exhibits superior interval sharpness when juxtaposed against six advanced benchmarks.</div></div>\",\"PeriodicalId\":50326,\"journal\":{\"name\":\"International Journal of Electrical Power & Energy Systems\",\"volume\":\"169 \",\"pages\":\"Article 110732\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Power & Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142061525002832\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525002832","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A novel multi-task learning model based on Transformer-LSTM for wind power forecasting
The integration of multi-task learning into multi-step deterministic and probabilistic prediction frameworks plays a pivotal role in augmenting the accuracy of wind power forecasts and mitigating associated operational uncertainties. Current wind power forecasting research usually focuses on single-task deterministic forecasting, but there is less research on multi-task learning for multi-step deterministic and probabilistic forecasting. To achieve this, a novel multi-task learning model based on Transformer-Long short-term memory (LSTM) for multi-step deterministic and probabilistic wind power forecasting. First, a novel deep learning hybrid approach (DLH) based on the dilated causal convolutional network, Transformer, LSTM, and L2 regularization is proposed to extract multi-dimensional and complex nonlinear features of wind power time series. Then, the DLH is introduced into the task-sharing layer of the multi-task learning model for multi-step deterministic prediction. In addition, a probabilistic forecasting model that integrates the proposed multi-task learning model and quantile regression is formulated to describe the forecast uncertainty of wind power. Finally, to improve the prediction accurateness, a new heuristic algorithm, namely hybrid Cauchy mutation-based Elk herd and sand cat swarm optimization, is proposed to optimize the model hyperparameters. The proposed deterministic and probabilistic forecasting models have been applied to operational datasets from a northwest China wind farm. Compared to 23 state-of-the-art deterministic models, the proposed model reduces the mean absolute error by a minimum of 0.3174 and a maximum of 9.190, with an average reduction of 2.278. Experimental outcomes also substantiate that the proposed probabilistic model exhibits superior interval sharpness when juxtaposed against six advanced benchmarks.
期刊介绍:
The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces.
As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.