直接在绝缘体上形成的多晶In1−xGaxAs薄膜的晶体和电学性质

IF 5.7 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Koki Nozawa , Seo Jisol , Takamitsu Ishiyama , Noriyuki Saitoh , Noriko Yoshizawa , Takashi Suemasu , Kaoru Toko
{"title":"直接在绝缘体上形成的多晶In1−xGaxAs薄膜的晶体和电学性质","authors":"Koki Nozawa ,&nbsp;Seo Jisol ,&nbsp;Takamitsu Ishiyama ,&nbsp;Noriyuki Saitoh ,&nbsp;Noriko Yoshizawa ,&nbsp;Takashi Suemasu ,&nbsp;Kaoru Toko","doi":"10.1016/j.materresbull.2025.113581","DOIUrl":null,"url":null,"abstract":"<div><div>Polycrystalline In<sub>1−</sub><em><sub>x</sub></em>Ga<em><sub>x</sub></em>As thin films are promising for high-performance electronics on versatile substrates, including transistors, solar cells, optical communication devices, and infrared sensors. This study examines the effects of composition, deposition temperature, and impurity doping on the grain size, crystal orientation, nanostructure, and electrical properties of In<sub>1−</sub><em><sub>x</sub></em>Ga<em><sub>x</sub></em>As layers, utilizing various evaluation methods with machine learning. The results demonstrate that the composition and deposition temperature significantly influence the crystallinity and crystal orientations. Higher In compositions and deposition temperatures yield In<sub>1−</sub><em><sub>x</sub></em>Ga<em><sub>x</sub></em>As with enhanced crystallinity. The undoped samples exhibit n-type conduction, which is likely attributable to antisite defects. Increasing the In content and deposition temperature increases the electron concentration and mobility up to 3 × 10<sup>18</sup> cm<sup>−3</sup> and 310 cm<sup>2</sup> V<sup>−1</sup>s<sup>−1</sup>, respectively. Sn is an effective n-type dopant, facilitating the control of electron concentration within the range of 10<sup>17</sup>–10<sup>19</sup> cm<sup>−3</sup>. These findings offer valuable insights into the application of In<sub>1−</sub><em><sub>x</sub></em>Ga<em><sub>x</sub></em>As in high-performance electronic devices.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"191 ","pages":"Article 113581"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal and electrical properties of polycrystalline In1−xGaxAs thin films directly formed on insulators\",\"authors\":\"Koki Nozawa ,&nbsp;Seo Jisol ,&nbsp;Takamitsu Ishiyama ,&nbsp;Noriyuki Saitoh ,&nbsp;Noriko Yoshizawa ,&nbsp;Takashi Suemasu ,&nbsp;Kaoru Toko\",\"doi\":\"10.1016/j.materresbull.2025.113581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polycrystalline In<sub>1−</sub><em><sub>x</sub></em>Ga<em><sub>x</sub></em>As thin films are promising for high-performance electronics on versatile substrates, including transistors, solar cells, optical communication devices, and infrared sensors. This study examines the effects of composition, deposition temperature, and impurity doping on the grain size, crystal orientation, nanostructure, and electrical properties of In<sub>1−</sub><em><sub>x</sub></em>Ga<em><sub>x</sub></em>As layers, utilizing various evaluation methods with machine learning. The results demonstrate that the composition and deposition temperature significantly influence the crystallinity and crystal orientations. Higher In compositions and deposition temperatures yield In<sub>1−</sub><em><sub>x</sub></em>Ga<em><sub>x</sub></em>As with enhanced crystallinity. The undoped samples exhibit n-type conduction, which is likely attributable to antisite defects. Increasing the In content and deposition temperature increases the electron concentration and mobility up to 3 × 10<sup>18</sup> cm<sup>−3</sup> and 310 cm<sup>2</sup> V<sup>−1</sup>s<sup>−1</sup>, respectively. Sn is an effective n-type dopant, facilitating the control of electron concentration within the range of 10<sup>17</sup>–10<sup>19</sup> cm<sup>−3</sup>. These findings offer valuable insights into the application of In<sub>1−</sub><em><sub>x</sub></em>Ga<em><sub>x</sub></em>As in high-performance electronic devices.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"191 \",\"pages\":\"Article 113581\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540825002892\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825002892","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多晶In1−xGaxAs薄膜在多功能衬底上的高性能电子产品中具有广阔的前景,包括晶体管,太阳能电池,光通信设备和红外传感器。本研究考察了成分、沉积温度和杂质掺杂对In1−xGaxAs层的晶粒尺寸、晶体取向、纳米结构和电性能的影响,利用各种评估方法和机器学习。结果表明,复合材料的组成和沉积温度对结晶度和晶体取向有显著影响。较高的In组成和沉积温度可生成结晶度增强的In1−xGaxAs。未掺杂的样品表现为n型导电,这可能是由于反位缺陷。随着In含量的增加和沉积温度的升高,电子浓度和迁移率分别达到3 × 1018 cm−3和310 cm2 V−1s−1。Sn是一种有效的n型掺杂剂,有利于将电子浓度控制在1017 ~ 1019 cm−3范围内。这些发现为In1−xGaxAs在高性能电子器件中的应用提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Crystal and electrical properties of polycrystalline In1−xGaxAs thin films directly formed on insulators

Crystal and electrical properties of polycrystalline In1−xGaxAs thin films directly formed on insulators
Polycrystalline In1−xGaxAs thin films are promising for high-performance electronics on versatile substrates, including transistors, solar cells, optical communication devices, and infrared sensors. This study examines the effects of composition, deposition temperature, and impurity doping on the grain size, crystal orientation, nanostructure, and electrical properties of In1−xGaxAs layers, utilizing various evaluation methods with machine learning. The results demonstrate that the composition and deposition temperature significantly influence the crystallinity and crystal orientations. Higher In compositions and deposition temperatures yield In1−xGaxAs with enhanced crystallinity. The undoped samples exhibit n-type conduction, which is likely attributable to antisite defects. Increasing the In content and deposition temperature increases the electron concentration and mobility up to 3 × 1018 cm−3 and 310 cm2 V−1s−1, respectively. Sn is an effective n-type dopant, facilitating the control of electron concentration within the range of 1017–1019 cm−3. These findings offer valuable insights into the application of In1−xGaxAs in high-performance electronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信