微塑料降低了土壤的压缩性,但对土壤的物理性质没有明显影响

IF 6.1 1区 农林科学 Q1 SOIL SCIENCE
Yuhao Dong , Lidong Ren , Xiaoxu Jia , Xiaoyong Liao , Laiming Huang , Xubo Zhang , Markus Flury , Li Xu
{"title":"微塑料降低了土壤的压缩性,但对土壤的物理性质没有明显影响","authors":"Yuhao Dong ,&nbsp;Lidong Ren ,&nbsp;Xiaoxu Jia ,&nbsp;Xiaoyong Liao ,&nbsp;Laiming Huang ,&nbsp;Xubo Zhang ,&nbsp;Markus Flury ,&nbsp;Li Xu","doi":"10.1016/j.still.2025.106688","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastic pollution of soils has raised concerns on how microplastics impact soil properties and functions. Impacts of microplastics on soil properties is usually studied by amending soils with microplastics at various concentrations, but little attention has been given on how to compact soils after microplastic incorporation and how microplastics affect soil compressibility. Here, we used the uniaxial compression test to investigate the effects of microplastic type (i.e., granular polyethylene and fibrous polypropylene), size (i.e., 20, 200, 1000 µm for granular polyethylene and 3000 and 5000 µm for fibrous polypropylene) and concentration (i.e., 0.0 %, 0.5 %, 1 % and 2 %) on compression characteristics of a silt loam soil, followed by the evaluation of soil structure, water holding characteristics, and water and gas permeability. Soil compression was significantly affected by microplastic types, size, and concentrations. Granular microplastics increased the void ratio uniformly within the applied stress whereas fibrous microplastics increased the void ratio much more at low stress than at high stress. As a result, fibrous microplastics significantly increased the compression index (C<sub>c</sub>) with increasing microplastics concentration. Granular microplastics decreased the swelling index (C<sub>s</sub>), making soil less resilient against compaction. However, soil structure, water holding characteristics, and water and gas permeability were not significantly affected, except for the 5000 µm fibrous polypropylene at a concentration of 2 %, where soil porosity increased and soil water holding capacity decreased. These findings highlight the importance in considering soil compressibility, especially for laboratory incubation experiments, when evaluating microplastic effects.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"253 ","pages":"Article 106688"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microplastics decrease soil compressibility but have no major impact on soil physical properties\",\"authors\":\"Yuhao Dong ,&nbsp;Lidong Ren ,&nbsp;Xiaoxu Jia ,&nbsp;Xiaoyong Liao ,&nbsp;Laiming Huang ,&nbsp;Xubo Zhang ,&nbsp;Markus Flury ,&nbsp;Li Xu\",\"doi\":\"10.1016/j.still.2025.106688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microplastic pollution of soils has raised concerns on how microplastics impact soil properties and functions. Impacts of microplastics on soil properties is usually studied by amending soils with microplastics at various concentrations, but little attention has been given on how to compact soils after microplastic incorporation and how microplastics affect soil compressibility. Here, we used the uniaxial compression test to investigate the effects of microplastic type (i.e., granular polyethylene and fibrous polypropylene), size (i.e., 20, 200, 1000 µm for granular polyethylene and 3000 and 5000 µm for fibrous polypropylene) and concentration (i.e., 0.0 %, 0.5 %, 1 % and 2 %) on compression characteristics of a silt loam soil, followed by the evaluation of soil structure, water holding characteristics, and water and gas permeability. Soil compression was significantly affected by microplastic types, size, and concentrations. Granular microplastics increased the void ratio uniformly within the applied stress whereas fibrous microplastics increased the void ratio much more at low stress than at high stress. As a result, fibrous microplastics significantly increased the compression index (C<sub>c</sub>) with increasing microplastics concentration. Granular microplastics decreased the swelling index (C<sub>s</sub>), making soil less resilient against compaction. However, soil structure, water holding characteristics, and water and gas permeability were not significantly affected, except for the 5000 µm fibrous polypropylene at a concentration of 2 %, where soil porosity increased and soil water holding capacity decreased. These findings highlight the importance in considering soil compressibility, especially for laboratory incubation experiments, when evaluating microplastic effects.</div></div>\",\"PeriodicalId\":49503,\"journal\":{\"name\":\"Soil & Tillage Research\",\"volume\":\"253 \",\"pages\":\"Article 106688\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil & Tillage Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167198725002429\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198725002429","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

土壤微塑料污染引起了人们对微塑料如何影响土壤性质和功能的关注。微塑料对土壤性质的影响通常是通过不同浓度的微塑料对土壤进行改良来研究的,但对微塑料掺入土壤后如何压实土壤以及微塑料对土壤压缩性的影响却很少关注。在这里,我们使用单轴压缩试验来研究微塑性类型(即粒状聚乙烯和纤维聚丙烯),尺寸(即粒状聚乙烯为20,200,1000 µm,纤维聚丙烯为3000和5000 µm)和浓度(即0.0 %,0.5 %,1 %和2 %)对粉壤土压缩特性的影响,然后评估土壤结构,持水特性以及水和透气性。土壤压缩受微塑料类型、粒径和浓度的显著影响。颗粒状微塑料在施加应力范围内均匀地增加孔隙比,而纤维状微塑料在低应力下比在高应力下增加孔隙比。结果表明,纤维性微塑料的压缩指数随微塑料浓度的增加而显著提高。颗粒状微塑料降低了膨胀指数(Cs),使土壤对压实的弹性降低。然而,除了浓度为2 %时,5000 µm纤维聚丙烯的孔隙度增加,土壤持水能力下降外,土壤结构、持水特性以及水和气体的渗透性没有受到显著影响。这些发现强调了在评估微塑性效应时考虑土壤压缩性的重要性,特别是在实验室孵化实验中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microplastics decrease soil compressibility but have no major impact on soil physical properties
Microplastic pollution of soils has raised concerns on how microplastics impact soil properties and functions. Impacts of microplastics on soil properties is usually studied by amending soils with microplastics at various concentrations, but little attention has been given on how to compact soils after microplastic incorporation and how microplastics affect soil compressibility. Here, we used the uniaxial compression test to investigate the effects of microplastic type (i.e., granular polyethylene and fibrous polypropylene), size (i.e., 20, 200, 1000 µm for granular polyethylene and 3000 and 5000 µm for fibrous polypropylene) and concentration (i.e., 0.0 %, 0.5 %, 1 % and 2 %) on compression characteristics of a silt loam soil, followed by the evaluation of soil structure, water holding characteristics, and water and gas permeability. Soil compression was significantly affected by microplastic types, size, and concentrations. Granular microplastics increased the void ratio uniformly within the applied stress whereas fibrous microplastics increased the void ratio much more at low stress than at high stress. As a result, fibrous microplastics significantly increased the compression index (Cc) with increasing microplastics concentration. Granular microplastics decreased the swelling index (Cs), making soil less resilient against compaction. However, soil structure, water holding characteristics, and water and gas permeability were not significantly affected, except for the 5000 µm fibrous polypropylene at a concentration of 2 %, where soil porosity increased and soil water holding capacity decreased. These findings highlight the importance in considering soil compressibility, especially for laboratory incubation experiments, when evaluating microplastic effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil & Tillage Research
Soil & Tillage Research 农林科学-土壤科学
CiteScore
13.00
自引率
6.20%
发文量
266
审稿时长
5 months
期刊介绍: Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research: The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信