一种用于在线跟踪纯液体、液体混合物和悬浮液中悬浮蒸发微滴半径演变的卷积神经网络技术

IF 2.3 3区 物理与天体物理 Q2 OPTICS
Kwasi Nyandey , Gennadiy Derkachov , Daniel Jakubczyk
{"title":"一种用于在线跟踪纯液体、液体混合物和悬浮液中悬浮蒸发微滴半径演变的卷积神经网络技术","authors":"Kwasi Nyandey ,&nbsp;Gennadiy Derkachov ,&nbsp;Daniel Jakubczyk","doi":"10.1016/j.jqsrt.2025.109533","DOIUrl":null,"url":null,"abstract":"<div><div>We have used convolutional neural network in a classification task to track the radius evolution of levitating evaporating microdroplets of pure diethylene glycol, diethylene glycol-water-polystyrene microparticles suspension, dipropylene glycol-water mixture and dipropylene glycol-water-silica nanoparticles suspension. We discretized a wider radii range into short radii segments, labeled them with class numbers and generated theoretical light scattering patterns from Mie theory. Then the network was trained on the theoretical images and used to classify unlabeled experimentally recorded Mie scattering patterns from the evaporating microdroplets. A plot of the class-average-radii versus the camera’s time step revealed the profile of the entire droplet radius evolution. We were able to work with ∼1500 classes and showed that the technique has the potential to distinguish droplet size difference of ±5 nm. We expect it to be applicable for online/real-time tracking of droplet evaporation.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"344 ","pages":"Article 109533"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A convolutional neural network technique for online tracking of the radius evolution of levitating evaporating microdroplets of pure liquids, liquid mixtures and suspensions\",\"authors\":\"Kwasi Nyandey ,&nbsp;Gennadiy Derkachov ,&nbsp;Daniel Jakubczyk\",\"doi\":\"10.1016/j.jqsrt.2025.109533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We have used convolutional neural network in a classification task to track the radius evolution of levitating evaporating microdroplets of pure diethylene glycol, diethylene glycol-water-polystyrene microparticles suspension, dipropylene glycol-water mixture and dipropylene glycol-water-silica nanoparticles suspension. We discretized a wider radii range into short radii segments, labeled them with class numbers and generated theoretical light scattering patterns from Mie theory. Then the network was trained on the theoretical images and used to classify unlabeled experimentally recorded Mie scattering patterns from the evaporating microdroplets. A plot of the class-average-radii versus the camera’s time step revealed the profile of the entire droplet radius evolution. We were able to work with ∼1500 classes and showed that the technique has the potential to distinguish droplet size difference of ±5 nm. We expect it to be applicable for online/real-time tracking of droplet evaporation.</div></div>\",\"PeriodicalId\":16935,\"journal\":{\"name\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"volume\":\"344 \",\"pages\":\"Article 109533\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022407325001955\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407325001955","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们利用卷积神经网络对纯二甘醇、二甘醇-水-聚苯乙烯微颗粒悬浮液、二甘醇-水混合物和二甘醇-水-二氧化硅纳米颗粒悬浮液的悬浮蒸发微滴的半径演化进行了分类。我们将更宽的半径范围离散成更短的半径段,用类数标记它们,并从Mie理论中生成理论光散射模式。然后对理论图像进行训练,并使用该网络对蒸发微滴中未标记的实验记录的Mie散射模式进行分类。类平均半径与相机时间步长的关系图揭示了整个液滴半径演化的轮廓。我们能够处理约1500个类别,并表明该技术有可能区分±5 nm的液滴大小差异。我们期望它可以用于液滴蒸发的在线/实时跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A convolutional neural network technique for online tracking of the radius evolution of levitating evaporating microdroplets of pure liquids, liquid mixtures and suspensions
We have used convolutional neural network in a classification task to track the radius evolution of levitating evaporating microdroplets of pure diethylene glycol, diethylene glycol-water-polystyrene microparticles suspension, dipropylene glycol-water mixture and dipropylene glycol-water-silica nanoparticles suspension. We discretized a wider radii range into short radii segments, labeled them with class numbers and generated theoretical light scattering patterns from Mie theory. Then the network was trained on the theoretical images and used to classify unlabeled experimentally recorded Mie scattering patterns from the evaporating microdroplets. A plot of the class-average-radii versus the camera’s time step revealed the profile of the entire droplet radius evolution. We were able to work with ∼1500 classes and showed that the technique has the potential to distinguish droplet size difference of ±5 nm. We expect it to be applicable for online/real-time tracking of droplet evaporation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
21.70%
发文量
273
审稿时长
58 days
期刊介绍: Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer: - Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas. - Spectral lineshape studies including models and computational algorithms. - Atmospheric spectroscopy. - Theoretical and experimental aspects of light scattering. - Application of light scattering in particle characterization and remote sensing. - Application of light scattering in biological sciences and medicine. - Radiative transfer in absorbing, emitting, and scattering media. - Radiative transfer in stochastic media.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信