{"title":"扩散影响电荷转移:电流与半积分线性关系的演示实验","authors":"Tamás Pajkossy","doi":"10.1016/j.elecom.2025.107969","DOIUrl":null,"url":null,"abstract":"<div><div>Diffusion-affected charge transfer is a basic situation of electrochemical kinetics; the rate coefficients are often estimated by analyzing cyclic voltammograms. Provided that a couple of conditions hold, decoupling of diffusion and charge transfer is possible by using a recent theory leading to a linear relation of the current and its so-called semiintegral. Accordingly, a set of voltammograms of such reactions, measured with varied scan rates, can be transformed into two functions characteristic of charge transfer and diffusion separately, yielding charge transfer rate coefficients. We present here voltammograms measured on a well-known electrochemical system (gold electrode in a ferrocyanide/ferricyanide containing aqueous solution) and demonstrate the applicability of the above-mentioned linear relation; finally, we calculate the charge transfer rate coefficients as a function of the electrode potential. The main advantages and disadvantages of the analysis method are discussed, along with the limitations of the practical applicability.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"178 ","pages":"Article 107969"},"PeriodicalIF":4.2000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion-affected charge transfer: demonstration experiment for the linear relationship between current and its semiintegral\",\"authors\":\"Tamás Pajkossy\",\"doi\":\"10.1016/j.elecom.2025.107969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diffusion-affected charge transfer is a basic situation of electrochemical kinetics; the rate coefficients are often estimated by analyzing cyclic voltammograms. Provided that a couple of conditions hold, decoupling of diffusion and charge transfer is possible by using a recent theory leading to a linear relation of the current and its so-called semiintegral. Accordingly, a set of voltammograms of such reactions, measured with varied scan rates, can be transformed into two functions characteristic of charge transfer and diffusion separately, yielding charge transfer rate coefficients. We present here voltammograms measured on a well-known electrochemical system (gold electrode in a ferrocyanide/ferricyanide containing aqueous solution) and demonstrate the applicability of the above-mentioned linear relation; finally, we calculate the charge transfer rate coefficients as a function of the electrode potential. The main advantages and disadvantages of the analysis method are discussed, along with the limitations of the practical applicability.</div></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"178 \",\"pages\":\"Article 107969\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248125001080\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248125001080","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Diffusion-affected charge transfer: demonstration experiment for the linear relationship between current and its semiintegral
Diffusion-affected charge transfer is a basic situation of electrochemical kinetics; the rate coefficients are often estimated by analyzing cyclic voltammograms. Provided that a couple of conditions hold, decoupling of diffusion and charge transfer is possible by using a recent theory leading to a linear relation of the current and its so-called semiintegral. Accordingly, a set of voltammograms of such reactions, measured with varied scan rates, can be transformed into two functions characteristic of charge transfer and diffusion separately, yielding charge transfer rate coefficients. We present here voltammograms measured on a well-known electrochemical system (gold electrode in a ferrocyanide/ferricyanide containing aqueous solution) and demonstrate the applicability of the above-mentioned linear relation; finally, we calculate the charge transfer rate coefficients as a function of the electrode potential. The main advantages and disadvantages of the analysis method are discussed, along with the limitations of the practical applicability.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.