压力诱导TaOx化合物相变的第一性原理研究

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Jinghong Zhao , Xue Du , Shaokai Wu , Shiling Luo , Chengyi Yin , Liang Fang , Miao Zhou
{"title":"压力诱导TaOx化合物相变的第一性原理研究","authors":"Jinghong Zhao ,&nbsp;Xue Du ,&nbsp;Shaokai Wu ,&nbsp;Shiling Luo ,&nbsp;Chengyi Yin ,&nbsp;Liang Fang ,&nbsp;Miao Zhou","doi":"10.1016/j.jpcs.2025.112881","DOIUrl":null,"url":null,"abstract":"<div><div>Using particle-swarm optimization algorithm and first-principles calculations, we have systematically investigated the phase stability of Ta–O compounds (TaO<sub><em>x</em></sub>, <em>x</em> = 1, 1.5, 2, 2.5, and 3) at pressures up to 200 GPa. We successfully discover new structures of TaO<sub><em>x</em></sub> that exhibit outstanding dynamical, thermodynamic, and mechanical stability at elevated pressures. Especially, at ambient pressure, TaO, Ta<sub>2</sub>O<sub>3</sub>, TaO<sub>2</sub>, Ta<sub>2</sub>O<sub>5</sub>, and TaO<sub>3</sub> adopt <span><math><mrow><mi>P</mi><mi>m</mi><mover><mn>3</mn><mo>‾</mo></mover><mi>m</mi></mrow></math></span>, <em>Pbcn</em>, <em>P</em>4<sub>2</sub>/<em>mnm</em>, <em>Pbam</em> and <span><math><mrow><mi>P</mi><mi>m</mi><mover><mn>3</mn><mo>‾</mo></mover><mi>m</mi></mrow></math></span> phases, which transform to <em>P</em>4/<em>nmm</em> (146 GPa), <em>Pnma</em> (39 GPa), <em>P</em>2<sub>1</sub>/<em>c</em> (34 GPa), <em>C</em>2/<em>c</em> (8 GPa) and <span><math><mrow><mi>I</mi><mi>m</mi><mover><mn>3</mn><mo>‾</mo></mover></mrow></math></span> (124 GPa) phases respectively, highlighting the important role of pressure in driving structural phase transition. Analyses on chemical bonding characteristics suggest the ion nature of these structures, and electronic structure calculations demonstrate that <em>P</em>4/<em>nmm</em> TaO, <em>Pnma</em> Ta<sub>2</sub>O<sub>3</sub>, <em>P</em>2<sub>1</sub>/<em>c</em> TaO<sub>2</sub>, and <span><math><mrow><mi>I</mi><mi>m</mi><mover><mn>3</mn><mo>‾</mo></mover></mrow></math></span> TaO<sub>3</sub> exhibit metallic behaviors, while <em>C</em>2/<em>c</em> Ta<sub>2</sub>O<sub>5</sub> is an insulator with a sizable band gap of 4.2 eV. We expect these results to provide valuable insights into the structural and electronic properties of TaO<sub><em>x</em></sub> at high pressures, which may open up new possibilities for exploring the potential applications of technologically important oxides in harsh conditions.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"207 ","pages":"Article 112881"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pressure-induced phase transition of TaOx compounds from first-principles investigations\",\"authors\":\"Jinghong Zhao ,&nbsp;Xue Du ,&nbsp;Shaokai Wu ,&nbsp;Shiling Luo ,&nbsp;Chengyi Yin ,&nbsp;Liang Fang ,&nbsp;Miao Zhou\",\"doi\":\"10.1016/j.jpcs.2025.112881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Using particle-swarm optimization algorithm and first-principles calculations, we have systematically investigated the phase stability of Ta–O compounds (TaO<sub><em>x</em></sub>, <em>x</em> = 1, 1.5, 2, 2.5, and 3) at pressures up to 200 GPa. We successfully discover new structures of TaO<sub><em>x</em></sub> that exhibit outstanding dynamical, thermodynamic, and mechanical stability at elevated pressures. Especially, at ambient pressure, TaO, Ta<sub>2</sub>O<sub>3</sub>, TaO<sub>2</sub>, Ta<sub>2</sub>O<sub>5</sub>, and TaO<sub>3</sub> adopt <span><math><mrow><mi>P</mi><mi>m</mi><mover><mn>3</mn><mo>‾</mo></mover><mi>m</mi></mrow></math></span>, <em>Pbcn</em>, <em>P</em>4<sub>2</sub>/<em>mnm</em>, <em>Pbam</em> and <span><math><mrow><mi>P</mi><mi>m</mi><mover><mn>3</mn><mo>‾</mo></mover><mi>m</mi></mrow></math></span> phases, which transform to <em>P</em>4/<em>nmm</em> (146 GPa), <em>Pnma</em> (39 GPa), <em>P</em>2<sub>1</sub>/<em>c</em> (34 GPa), <em>C</em>2/<em>c</em> (8 GPa) and <span><math><mrow><mi>I</mi><mi>m</mi><mover><mn>3</mn><mo>‾</mo></mover></mrow></math></span> (124 GPa) phases respectively, highlighting the important role of pressure in driving structural phase transition. Analyses on chemical bonding characteristics suggest the ion nature of these structures, and electronic structure calculations demonstrate that <em>P</em>4/<em>nmm</em> TaO, <em>Pnma</em> Ta<sub>2</sub>O<sub>3</sub>, <em>P</em>2<sub>1</sub>/<em>c</em> TaO<sub>2</sub>, and <span><math><mrow><mi>I</mi><mi>m</mi><mover><mn>3</mn><mo>‾</mo></mover></mrow></math></span> TaO<sub>3</sub> exhibit metallic behaviors, while <em>C</em>2/<em>c</em> Ta<sub>2</sub>O<sub>5</sub> is an insulator with a sizable band gap of 4.2 eV. We expect these results to provide valuable insights into the structural and electronic properties of TaO<sub><em>x</em></sub> at high pressures, which may open up new possibilities for exploring the potential applications of technologically important oxides in harsh conditions.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"207 \",\"pages\":\"Article 112881\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369725003336\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725003336","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用粒子群优化算法和第一性原理计算,我们系统地研究了Ta-O化合物(TaOx, x = 1、1.5、2、2.5和3)在高达200 GPa压力下的相稳定性。我们成功地发现了在高压下表现出出色的动力学、热力学和机械稳定性的TaOx新结构。特别是在环境压力下,TaO、Ta2O3、TaO2、Ta2O5、TaO3等采用Pm3形式的m、Pbcn、P42/mnm、pam和Pm3形式的m相,分别转化为P4/nmm (146 GPa)、Pnma (39 GPa)、P21/c (34 GPa)、C2/c (8 GPa)和Im3形式的(124 GPa)相,突出了压力在驱动结构相变中的重要作用。化学键合特性分析表明这些结构具有离子性质,电子结构计算表明P4/nmm TaO、Pnma Ta2O3、P21/c TaO2和Im3 Ta2O3表现出金属行为,而C2/c Ta2O5是具有相当大的4.2 eV带隙的绝缘体。我们希望这些结果能够为高压下TaOx的结构和电子特性提供有价值的见解,这可能为探索技术上重要的氧化物在恶劣条件下的潜在应用开辟新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pressure-induced phase transition of TaOx compounds from first-principles investigations
Using particle-swarm optimization algorithm and first-principles calculations, we have systematically investigated the phase stability of Ta–O compounds (TaOx, x = 1, 1.5, 2, 2.5, and 3) at pressures up to 200 GPa. We successfully discover new structures of TaOx that exhibit outstanding dynamical, thermodynamic, and mechanical stability at elevated pressures. Especially, at ambient pressure, TaO, Ta2O3, TaO2, Ta2O5, and TaO3 adopt Pm3m, Pbcn, P42/mnm, Pbam and Pm3m phases, which transform to P4/nmm (146 GPa), Pnma (39 GPa), P21/c (34 GPa), C2/c (8 GPa) and Im3 (124 GPa) phases respectively, highlighting the important role of pressure in driving structural phase transition. Analyses on chemical bonding characteristics suggest the ion nature of these structures, and electronic structure calculations demonstrate that P4/nmm TaO, Pnma Ta2O3, P21/c TaO2, and Im3 TaO3 exhibit metallic behaviors, while C2/c Ta2O5 is an insulator with a sizable band gap of 4.2 eV. We expect these results to provide valuable insights into the structural and electronic properties of TaOx at high pressures, which may open up new possibilities for exploring the potential applications of technologically important oxides in harsh conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信