Jinghong Zhao , Xue Du , Shaokai Wu , Shiling Luo , Chengyi Yin , Liang Fang , Miao Zhou
{"title":"压力诱导TaOx化合物相变的第一性原理研究","authors":"Jinghong Zhao , Xue Du , Shaokai Wu , Shiling Luo , Chengyi Yin , Liang Fang , Miao Zhou","doi":"10.1016/j.jpcs.2025.112881","DOIUrl":null,"url":null,"abstract":"<div><div>Using particle-swarm optimization algorithm and first-principles calculations, we have systematically investigated the phase stability of Ta–O compounds (TaO<sub><em>x</em></sub>, <em>x</em> = 1, 1.5, 2, 2.5, and 3) at pressures up to 200 GPa. We successfully discover new structures of TaO<sub><em>x</em></sub> that exhibit outstanding dynamical, thermodynamic, and mechanical stability at elevated pressures. Especially, at ambient pressure, TaO, Ta<sub>2</sub>O<sub>3</sub>, TaO<sub>2</sub>, Ta<sub>2</sub>O<sub>5</sub>, and TaO<sub>3</sub> adopt <span><math><mrow><mi>P</mi><mi>m</mi><mover><mn>3</mn><mo>‾</mo></mover><mi>m</mi></mrow></math></span>, <em>Pbcn</em>, <em>P</em>4<sub>2</sub>/<em>mnm</em>, <em>Pbam</em> and <span><math><mrow><mi>P</mi><mi>m</mi><mover><mn>3</mn><mo>‾</mo></mover><mi>m</mi></mrow></math></span> phases, which transform to <em>P</em>4/<em>nmm</em> (146 GPa), <em>Pnma</em> (39 GPa), <em>P</em>2<sub>1</sub>/<em>c</em> (34 GPa), <em>C</em>2/<em>c</em> (8 GPa) and <span><math><mrow><mi>I</mi><mi>m</mi><mover><mn>3</mn><mo>‾</mo></mover></mrow></math></span> (124 GPa) phases respectively, highlighting the important role of pressure in driving structural phase transition. Analyses on chemical bonding characteristics suggest the ion nature of these structures, and electronic structure calculations demonstrate that <em>P</em>4/<em>nmm</em> TaO, <em>Pnma</em> Ta<sub>2</sub>O<sub>3</sub>, <em>P</em>2<sub>1</sub>/<em>c</em> TaO<sub>2</sub>, and <span><math><mrow><mi>I</mi><mi>m</mi><mover><mn>3</mn><mo>‾</mo></mover></mrow></math></span> TaO<sub>3</sub> exhibit metallic behaviors, while <em>C</em>2/<em>c</em> Ta<sub>2</sub>O<sub>5</sub> is an insulator with a sizable band gap of 4.2 eV. We expect these results to provide valuable insights into the structural and electronic properties of TaO<sub><em>x</em></sub> at high pressures, which may open up new possibilities for exploring the potential applications of technologically important oxides in harsh conditions.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"207 ","pages":"Article 112881"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pressure-induced phase transition of TaOx compounds from first-principles investigations\",\"authors\":\"Jinghong Zhao , Xue Du , Shaokai Wu , Shiling Luo , Chengyi Yin , Liang Fang , Miao Zhou\",\"doi\":\"10.1016/j.jpcs.2025.112881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Using particle-swarm optimization algorithm and first-principles calculations, we have systematically investigated the phase stability of Ta–O compounds (TaO<sub><em>x</em></sub>, <em>x</em> = 1, 1.5, 2, 2.5, and 3) at pressures up to 200 GPa. We successfully discover new structures of TaO<sub><em>x</em></sub> that exhibit outstanding dynamical, thermodynamic, and mechanical stability at elevated pressures. Especially, at ambient pressure, TaO, Ta<sub>2</sub>O<sub>3</sub>, TaO<sub>2</sub>, Ta<sub>2</sub>O<sub>5</sub>, and TaO<sub>3</sub> adopt <span><math><mrow><mi>P</mi><mi>m</mi><mover><mn>3</mn><mo>‾</mo></mover><mi>m</mi></mrow></math></span>, <em>Pbcn</em>, <em>P</em>4<sub>2</sub>/<em>mnm</em>, <em>Pbam</em> and <span><math><mrow><mi>P</mi><mi>m</mi><mover><mn>3</mn><mo>‾</mo></mover><mi>m</mi></mrow></math></span> phases, which transform to <em>P</em>4/<em>nmm</em> (146 GPa), <em>Pnma</em> (39 GPa), <em>P</em>2<sub>1</sub>/<em>c</em> (34 GPa), <em>C</em>2/<em>c</em> (8 GPa) and <span><math><mrow><mi>I</mi><mi>m</mi><mover><mn>3</mn><mo>‾</mo></mover></mrow></math></span> (124 GPa) phases respectively, highlighting the important role of pressure in driving structural phase transition. Analyses on chemical bonding characteristics suggest the ion nature of these structures, and electronic structure calculations demonstrate that <em>P</em>4/<em>nmm</em> TaO, <em>Pnma</em> Ta<sub>2</sub>O<sub>3</sub>, <em>P</em>2<sub>1</sub>/<em>c</em> TaO<sub>2</sub>, and <span><math><mrow><mi>I</mi><mi>m</mi><mover><mn>3</mn><mo>‾</mo></mover></mrow></math></span> TaO<sub>3</sub> exhibit metallic behaviors, while <em>C</em>2/<em>c</em> Ta<sub>2</sub>O<sub>5</sub> is an insulator with a sizable band gap of 4.2 eV. We expect these results to provide valuable insights into the structural and electronic properties of TaO<sub><em>x</em></sub> at high pressures, which may open up new possibilities for exploring the potential applications of technologically important oxides in harsh conditions.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"207 \",\"pages\":\"Article 112881\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369725003336\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725003336","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Pressure-induced phase transition of TaOx compounds from first-principles investigations
Using particle-swarm optimization algorithm and first-principles calculations, we have systematically investigated the phase stability of Ta–O compounds (TaOx, x = 1, 1.5, 2, 2.5, and 3) at pressures up to 200 GPa. We successfully discover new structures of TaOx that exhibit outstanding dynamical, thermodynamic, and mechanical stability at elevated pressures. Especially, at ambient pressure, TaO, Ta2O3, TaO2, Ta2O5, and TaO3 adopt , Pbcn, P42/mnm, Pbam and phases, which transform to P4/nmm (146 GPa), Pnma (39 GPa), P21/c (34 GPa), C2/c (8 GPa) and (124 GPa) phases respectively, highlighting the important role of pressure in driving structural phase transition. Analyses on chemical bonding characteristics suggest the ion nature of these structures, and electronic structure calculations demonstrate that P4/nmm TaO, Pnma Ta2O3, P21/c TaO2, and TaO3 exhibit metallic behaviors, while C2/c Ta2O5 is an insulator with a sizable band gap of 4.2 eV. We expect these results to provide valuable insights into the structural and electronic properties of TaOx at high pressures, which may open up new possibilities for exploring the potential applications of technologically important oxides in harsh conditions.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.