Pd-Sn-Ir催化剂阵列中甲酸氧化的最佳配比鉴定

IF 5.3 3区 工程技术 Q2 ENERGY & FUELS
Chieh-Lin Chiang,  and , Yu-Ching Weng*, 
{"title":"Pd-Sn-Ir催化剂阵列中甲酸氧化的最佳配比鉴定","authors":"Chieh-Lin Chiang,&nbsp; and ,&nbsp;Yu-Ching Weng*,&nbsp;","doi":"10.1021/acs.energyfuels.5c0073810.1021/acs.energyfuels.5c00738","DOIUrl":null,"url":null,"abstract":"<p >The Pd–Sn–Ir catalyst array was prepared using the concept of combinatorial methods, and the optimal catalyst composition for catalytic formic acid oxidation was rapidly screened using electrochemical scanning microscopy (SECM). Energy-dispersive X-ray spectroscopy (EDX) analysis confirmed that the elemental composition of the Pd–Sn–Ir catalysts matched the molar concentration ratios of the precursor solution. Among the Pd–Sn–Ir catalyst arrays, the optimal composition was identified as the Pd<sub>60</sub>Sn<sub>20</sub>Ir<sub>20</sub> catalyst. The Pd<sub>60</sub>Sn<sub>20</sub>Ir<sub>20</sub> electrode exhibits higher mass and specific activities for formic acid oxidation than the pure Pd electrode. Additionally, the Pd<sub>60</sub>Sn<sub>20</sub>Ir<sub>20</sub> catalyst shows superior CO desorption capability. The incorporation of Sn lowers the Pd d-band center, thereby weakening the adsorption of reaction intermediates, while Ir promotes the enrichment of surface hydroxyl species, facilitating intermediate oxidation at lower potentials. As a result, the combined addition of Sn and Ir significantly enhances the catalytic performance for formic acid oxidation and effectively improves the long-term stability of the catalyst.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 21","pages":"9943–9955 9943–9955"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.energyfuels.5c00738","citationCount":"0","resultStr":"{\"title\":\"Optimal Ratio Identification for Formic Acid Oxidation in Pd–Sn–Ir Catalyst Arrays\",\"authors\":\"Chieh-Lin Chiang,&nbsp; and ,&nbsp;Yu-Ching Weng*,&nbsp;\",\"doi\":\"10.1021/acs.energyfuels.5c0073810.1021/acs.energyfuels.5c00738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The Pd–Sn–Ir catalyst array was prepared using the concept of combinatorial methods, and the optimal catalyst composition for catalytic formic acid oxidation was rapidly screened using electrochemical scanning microscopy (SECM). Energy-dispersive X-ray spectroscopy (EDX) analysis confirmed that the elemental composition of the Pd–Sn–Ir catalysts matched the molar concentration ratios of the precursor solution. Among the Pd–Sn–Ir catalyst arrays, the optimal composition was identified as the Pd<sub>60</sub>Sn<sub>20</sub>Ir<sub>20</sub> catalyst. The Pd<sub>60</sub>Sn<sub>20</sub>Ir<sub>20</sub> electrode exhibits higher mass and specific activities for formic acid oxidation than the pure Pd electrode. Additionally, the Pd<sub>60</sub>Sn<sub>20</sub>Ir<sub>20</sub> catalyst shows superior CO desorption capability. The incorporation of Sn lowers the Pd d-band center, thereby weakening the adsorption of reaction intermediates, while Ir promotes the enrichment of surface hydroxyl species, facilitating intermediate oxidation at lower potentials. As a result, the combined addition of Sn and Ir significantly enhances the catalytic performance for formic acid oxidation and effectively improves the long-term stability of the catalyst.</p>\",\"PeriodicalId\":35,\"journal\":{\"name\":\"Energy & Fuels\",\"volume\":\"39 21\",\"pages\":\"9943–9955 9943–9955\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.energyfuels.5c00738\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Fuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c00738\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c00738","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

采用组合法的概念制备了Pd-Sn-Ir催化剂阵列,并利用电化学扫描显微镜(SECM)快速筛选了催化甲酸氧化的最佳催化剂组成。能量色散x射线光谱(EDX)分析证实,Pd-Sn-Ir催化剂的元素组成与前驱体溶液的摩尔浓度比相匹配。在Pd-Sn-Ir催化剂阵列中,最优组合为Pd60Sn20Ir20催化剂。Pd60Sn20Ir20电极具有比纯Pd电极更高的质量和甲酸氧化比活性。此外,Pd60Sn20Ir20催化剂表现出优异的CO脱附能力。Sn的掺入降低了Pd -带中心,从而减弱了反应中间体的吸附,而Ir促进了表面羟基的富集,有利于中间体在低电位下氧化。结果表明,Sn和Ir的复合添加显著提高了甲酸氧化的催化性能,有效提高了催化剂的长期稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Ratio Identification for Formic Acid Oxidation in Pd–Sn–Ir Catalyst Arrays

The Pd–Sn–Ir catalyst array was prepared using the concept of combinatorial methods, and the optimal catalyst composition for catalytic formic acid oxidation was rapidly screened using electrochemical scanning microscopy (SECM). Energy-dispersive X-ray spectroscopy (EDX) analysis confirmed that the elemental composition of the Pd–Sn–Ir catalysts matched the molar concentration ratios of the precursor solution. Among the Pd–Sn–Ir catalyst arrays, the optimal composition was identified as the Pd60Sn20Ir20 catalyst. The Pd60Sn20Ir20 electrode exhibits higher mass and specific activities for formic acid oxidation than the pure Pd electrode. Additionally, the Pd60Sn20Ir20 catalyst shows superior CO desorption capability. The incorporation of Sn lowers the Pd d-band center, thereby weakening the adsorption of reaction intermediates, while Ir promotes the enrichment of surface hydroxyl species, facilitating intermediate oxidation at lower potentials. As a result, the combined addition of Sn and Ir significantly enhances the catalytic performance for formic acid oxidation and effectively improves the long-term stability of the catalyst.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信