锌离子混合超级电容器:抑制锌枝晶生长的电极材料、电解质和隔膜的研究进展

IF 5.2 3区 工程技术 Q2 ENERGY & FUELS
Xinyi Zhou, Weisong Yang, Chenyu Wu, Shengjuan Li and Lei Li*, 
{"title":"锌离子混合超级电容器:抑制锌枝晶生长的电极材料、电解质和隔膜的研究进展","authors":"Xinyi Zhou,&nbsp;Weisong Yang,&nbsp;Chenyu Wu,&nbsp;Shengjuan Li and Lei Li*,&nbsp;","doi":"10.1021/acs.energyfuels.4c0524610.1021/acs.energyfuels.4c05246","DOIUrl":null,"url":null,"abstract":"<p >Zinc-ion hybrid supercapacitors (ZHSCs) combine the high energy of zinc-ion batteries with supercapacitors’ long life and high power density. Therefore, they are considered promising candidates for next-generation high-performance energy storage systems. However, zinc dendrite growth, which can puncture the diaphragm, leading to short circuits and capacity degradation, is a current challenge for ZHSCs. This review summarizes the research progress of ZHSCs in cathodes (including carbon-based materials, transition metal oxides, MXenes, and conductive polymers), anodes, electrolytes, and diaphragms. It also describes the effects of electrode material structure, electrolyte composition, and diaphragm structure on the growth of zinc dendrites to offer methods for enhancing the performance of ZHSCs.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 21","pages":"9641–9667 9641–9667"},"PeriodicalIF":5.2000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zinc-Ion Hybrid Supercapacitors: A Review on Electrode Materials, Electrolytes, and Diaphragms to Inhibit Zinc Dendrite Growth\",\"authors\":\"Xinyi Zhou,&nbsp;Weisong Yang,&nbsp;Chenyu Wu,&nbsp;Shengjuan Li and Lei Li*,&nbsp;\",\"doi\":\"10.1021/acs.energyfuels.4c0524610.1021/acs.energyfuels.4c05246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Zinc-ion hybrid supercapacitors (ZHSCs) combine the high energy of zinc-ion batteries with supercapacitors’ long life and high power density. Therefore, they are considered promising candidates for next-generation high-performance energy storage systems. However, zinc dendrite growth, which can puncture the diaphragm, leading to short circuits and capacity degradation, is a current challenge for ZHSCs. This review summarizes the research progress of ZHSCs in cathodes (including carbon-based materials, transition metal oxides, MXenes, and conductive polymers), anodes, electrolytes, and diaphragms. It also describes the effects of electrode material structure, electrolyte composition, and diaphragm structure on the growth of zinc dendrites to offer methods for enhancing the performance of ZHSCs.</p>\",\"PeriodicalId\":35,\"journal\":{\"name\":\"Energy & Fuels\",\"volume\":\"39 21\",\"pages\":\"9641–9667 9641–9667\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Fuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c05246\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c05246","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

锌离子混合超级电容器(ZHSCs)将锌离子电池的高能量与超级电容器的长寿命和高功率密度相结合。因此,它们被认为是下一代高性能储能系统的有希望的候选者。然而,锌枝晶的生长可能会刺穿隔膜,导致短路和容量下降,这是zhsc目前面临的挑战。本文综述了zhsc在阴极(包括碳基材料、过渡金属氧化物、MXenes和导电聚合物)、阳极、电解质和隔膜等方面的研究进展。介绍了电极材料结构、电解质组成和隔膜结构对锌枝晶生长的影响,为提高zhsc的性能提供了方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zinc-Ion Hybrid Supercapacitors: A Review on Electrode Materials, Electrolytes, and Diaphragms to Inhibit Zinc Dendrite Growth

Zinc-ion hybrid supercapacitors (ZHSCs) combine the high energy of zinc-ion batteries with supercapacitors’ long life and high power density. Therefore, they are considered promising candidates for next-generation high-performance energy storage systems. However, zinc dendrite growth, which can puncture the diaphragm, leading to short circuits and capacity degradation, is a current challenge for ZHSCs. This review summarizes the research progress of ZHSCs in cathodes (including carbon-based materials, transition metal oxides, MXenes, and conductive polymers), anodes, electrolytes, and diaphragms. It also describes the effects of electrode material structure, electrolyte composition, and diaphragm structure on the growth of zinc dendrites to offer methods for enhancing the performance of ZHSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信