用于微型超级电容器的石墨烯/炭黑电极3D列印

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiaoli Jiang, Yan Zhang, Cheng Tang, Zehua Zhao, Wenqi Liu, Huandi Zhang, Jiale Song, Xiaowei Shi and Lei Li*, 
{"title":"用于微型超级电容器的石墨烯/炭黑电极3D列印","authors":"Xiaoli Jiang,&nbsp;Yan Zhang,&nbsp;Cheng Tang,&nbsp;Zehua Zhao,&nbsp;Wenqi Liu,&nbsp;Huandi Zhang,&nbsp;Jiale Song,&nbsp;Xiaowei Shi and Lei Li*,&nbsp;","doi":"10.1021/acsanm.5c0109510.1021/acsanm.5c01095","DOIUrl":null,"url":null,"abstract":"<p >Microsupercapacitors are important power suppliers for microelectronics, but their application is limited by low charge storage ability. Increasing the active material loading in the electrode can not only enhance charge storage ability but also increase the thickness of the electrode, which suffers from limited electrolyte ion diffusion. In this study, we design and print a 3D array-structured graphene/conductive carbon black electrode featuring tailored porosity and electrical conductivity via a self-sacrifice template of ethyl cellulose and carbon black. This structure design of electrode enhances active material sufficiency utilization with good electrode and electrolyte contact and facilitates electrolyte ion diffusion into the electrode. Their synergistic effect significantly improves the electrochemical performance of the microsupercapacitor, including a high areal capacitance of 35.75 mF cm<sup>–2</sup>, areal energy of 27.71 μWh cm<sup>–2</sup>, and power densities of 1.10 mW cm<sup>–2</sup>. A single device can power a pressure sensor for over 10,000 s, highlighting its remarkable potential for practical applications. This work would be beneficial for the development of microsupercapacitors.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 21","pages":"10956–10963 10956–10963"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Printing 3D Array of Electrodes Made of Graphene/Carbon Black for Microsupercapacitors\",\"authors\":\"Xiaoli Jiang,&nbsp;Yan Zhang,&nbsp;Cheng Tang,&nbsp;Zehua Zhao,&nbsp;Wenqi Liu,&nbsp;Huandi Zhang,&nbsp;Jiale Song,&nbsp;Xiaowei Shi and Lei Li*,&nbsp;\",\"doi\":\"10.1021/acsanm.5c0109510.1021/acsanm.5c01095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Microsupercapacitors are important power suppliers for microelectronics, but their application is limited by low charge storage ability. Increasing the active material loading in the electrode can not only enhance charge storage ability but also increase the thickness of the electrode, which suffers from limited electrolyte ion diffusion. In this study, we design and print a 3D array-structured graphene/conductive carbon black electrode featuring tailored porosity and electrical conductivity via a self-sacrifice template of ethyl cellulose and carbon black. This structure design of electrode enhances active material sufficiency utilization with good electrode and electrolyte contact and facilitates electrolyte ion diffusion into the electrode. Their synergistic effect significantly improves the electrochemical performance of the microsupercapacitor, including a high areal capacitance of 35.75 mF cm<sup>–2</sup>, areal energy of 27.71 μWh cm<sup>–2</sup>, and power densities of 1.10 mW cm<sup>–2</sup>. A single device can power a pressure sensor for over 10,000 s, highlighting its remarkable potential for practical applications. This work would be beneficial for the development of microsupercapacitors.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 21\",\"pages\":\"10956–10963 10956–10963\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c01095\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c01095","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

微型超级电容器是微电子技术的重要电源,但其应用受到低电荷存储能力的限制。增加电极中活性物质的载荷不仅可以提高电极的电荷存储能力,还可以增加电极的厚度,从而克服电解质离子扩散受限的问题。在这项研究中,我们通过乙基纤维素和炭黑的自我牺牲模板设计并打印了具有定制孔隙率和导电性的3D阵列结构石墨烯/导电炭黑电极。这种电极结构设计提高了活性物质的充分利用,电极与电解质接触良好,有利于电解质离子向电极扩散。它们的协同作用显著提高了微超级电容器的电化学性能,其面电容高达35.75 mF cm-2,面能达到27.71 μWh cm-2,功率密度达到1.10 mW cm-2。单个设备可以为压力传感器供电超过10,000 s,突出了其实际应用的巨大潜力。这项工作对微型超级电容器的发展具有重要的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Printing 3D Array of Electrodes Made of Graphene/Carbon Black for Microsupercapacitors

Printing 3D Array of Electrodes Made of Graphene/Carbon Black for Microsupercapacitors

Microsupercapacitors are important power suppliers for microelectronics, but their application is limited by low charge storage ability. Increasing the active material loading in the electrode can not only enhance charge storage ability but also increase the thickness of the electrode, which suffers from limited electrolyte ion diffusion. In this study, we design and print a 3D array-structured graphene/conductive carbon black electrode featuring tailored porosity and electrical conductivity via a self-sacrifice template of ethyl cellulose and carbon black. This structure design of electrode enhances active material sufficiency utilization with good electrode and electrolyte contact and facilitates electrolyte ion diffusion into the electrode. Their synergistic effect significantly improves the electrochemical performance of the microsupercapacitor, including a high areal capacitance of 35.75 mF cm–2, areal energy of 27.71 μWh cm–2, and power densities of 1.10 mW cm–2. A single device can power a pressure sensor for over 10,000 s, highlighting its remarkable potential for practical applications. This work would be beneficial for the development of microsupercapacitors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信