基于界面工程mxene -聚氨酯复合材料的多功能碳纤维复合材料:协同增强机械、原位损伤传感和电磁干扰屏蔽性能

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yi Hu*, Xinhui He, Ye Liu, Yan Yang, Chunhao Ma, Zhiwei Sun and Jianjun Jiang*, 
{"title":"基于界面工程mxene -聚氨酯复合材料的多功能碳纤维复合材料:协同增强机械、原位损伤传感和电磁干扰屏蔽性能","authors":"Yi Hu*,&nbsp;Xinhui He,&nbsp;Ye Liu,&nbsp;Yan Yang,&nbsp;Chunhao Ma,&nbsp;Zhiwei Sun and Jianjun Jiang*,&nbsp;","doi":"10.1021/acsanm.5c0118010.1021/acsanm.5c01180","DOIUrl":null,"url":null,"abstract":"<p >An organic–inorganic hybrid filler system comprising isocyanate-terminated polyurethane (PU) and hydroxyl-terminated MXene nanoplatelets was developed and incorporated into an epoxy (EP) matrix. The 0.1% MXene and 1% PU in the EP matrix resulted in a 25% and 60% increase in tensile and bending strength, respectively, compared to neat EP, attributed to the crack-pinning effect of MXene, shear yielding and plastic deformation of PU, and strong chemical bonding between PU and EP. Vacuum-assisted resin infusion (VARI) was used to infuse the modified EP into a carbon fiber (CF) preform, leading to a 104% and 79% improvement in bending strength and interlaminar shear strength (ILSS) for the 0.1%MXene-1%PU-EP/CF composite compared to the desized CF/EP. The uniform dispersion of conductive MXene nanosheets and the inherent conductivity of the CF skeleton resulted in a 123% and 25% increase in out-of-plane and in-plane electrical conductivity. The conductive MXene-PU hybrid network enabled highly sensitive and reliable in situ damage sensing capabilities. The 0.1%MXene-1%PU-EP/CF composite exhibited a maximum electromagnetic interference (EMI) shielding effectiveness (SE) of 27.8 dB, attributed to conductive loss, interfacial polarization, and dipole polarization mechanisms. This study demonstrates the effectiveness of hybridizing MXene and PU in simultaneously enhancing the mechanical, electrical, in situ damage sensing, and EMI shielding properties of carbon fiber reinforced polymer (CFRP) composites, providing valuable insights for future research in multifunctional composite materials.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 21","pages":"10985–11001 10985–11001"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional Carbon Fiber Composites via Interface-Engineered MXene-Polyurethane Hybrids: Synergistically Enhanced Mechanical, In Situ Damage Sensing, and EMI Shielding Properties\",\"authors\":\"Yi Hu*,&nbsp;Xinhui He,&nbsp;Ye Liu,&nbsp;Yan Yang,&nbsp;Chunhao Ma,&nbsp;Zhiwei Sun and Jianjun Jiang*,&nbsp;\",\"doi\":\"10.1021/acsanm.5c0118010.1021/acsanm.5c01180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >An organic–inorganic hybrid filler system comprising isocyanate-terminated polyurethane (PU) and hydroxyl-terminated MXene nanoplatelets was developed and incorporated into an epoxy (EP) matrix. The 0.1% MXene and 1% PU in the EP matrix resulted in a 25% and 60% increase in tensile and bending strength, respectively, compared to neat EP, attributed to the crack-pinning effect of MXene, shear yielding and plastic deformation of PU, and strong chemical bonding between PU and EP. Vacuum-assisted resin infusion (VARI) was used to infuse the modified EP into a carbon fiber (CF) preform, leading to a 104% and 79% improvement in bending strength and interlaminar shear strength (ILSS) for the 0.1%MXene-1%PU-EP/CF composite compared to the desized CF/EP. The uniform dispersion of conductive MXene nanosheets and the inherent conductivity of the CF skeleton resulted in a 123% and 25% increase in out-of-plane and in-plane electrical conductivity. The conductive MXene-PU hybrid network enabled highly sensitive and reliable in situ damage sensing capabilities. The 0.1%MXene-1%PU-EP/CF composite exhibited a maximum electromagnetic interference (EMI) shielding effectiveness (SE) of 27.8 dB, attributed to conductive loss, interfacial polarization, and dipole polarization mechanisms. This study demonstrates the effectiveness of hybridizing MXene and PU in simultaneously enhancing the mechanical, electrical, in situ damage sensing, and EMI shielding properties of carbon fiber reinforced polymer (CFRP) composites, providing valuable insights for future research in multifunctional composite materials.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 21\",\"pages\":\"10985–11001 10985–11001\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c01180\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c01180","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发了一种由端异氰酸酯聚氨酯(PU)和端羟基MXene纳米片组成的有机-无机杂化填料体系,并将其掺入环氧树脂(EP)基体中。与纯EP相比,0.1% MXene和1% PU的拉伸和弯曲强度分别提高了25%和60%,这是由于MXene的裂纹钉钉效应、PU的剪切屈服和塑性变形以及PU与EP之间的强化学键合。采用真空辅助树脂注入法(VARI)将改性EP注入碳纤维(CF)预成型中,0.1%MXene-1%PU-EP/CF复合材料的抗弯强度和层间剪切强度(ILSS)分别比减浆后的CF/EP提高了104%和79%。导电MXene纳米片的均匀分散和CF骨架的固有导电性使其面外和面内电导率分别提高了123%和25%。导电MXene-PU混合网络实现了高灵敏度和可靠的原位损伤传感能力。0.1%MXene-1%PU-EP/CF复合材料的最大电磁干扰屏蔽效能(SE)为27.8 dB,主要归因于导电损耗、界面极化和偶极极化机制。该研究证明了MXene和PU杂化同时增强碳纤维增强聚合物(CFRP)复合材料的机械、电气、原位损伤传感和电磁干扰屏蔽性能的有效性,为未来多功能复合材料的研究提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multifunctional Carbon Fiber Composites via Interface-Engineered MXene-Polyurethane Hybrids: Synergistically Enhanced Mechanical, In Situ Damage Sensing, and EMI Shielding Properties

Multifunctional Carbon Fiber Composites via Interface-Engineered MXene-Polyurethane Hybrids: Synergistically Enhanced Mechanical, In Situ Damage Sensing, and EMI Shielding Properties

An organic–inorganic hybrid filler system comprising isocyanate-terminated polyurethane (PU) and hydroxyl-terminated MXene nanoplatelets was developed and incorporated into an epoxy (EP) matrix. The 0.1% MXene and 1% PU in the EP matrix resulted in a 25% and 60% increase in tensile and bending strength, respectively, compared to neat EP, attributed to the crack-pinning effect of MXene, shear yielding and plastic deformation of PU, and strong chemical bonding between PU and EP. Vacuum-assisted resin infusion (VARI) was used to infuse the modified EP into a carbon fiber (CF) preform, leading to a 104% and 79% improvement in bending strength and interlaminar shear strength (ILSS) for the 0.1%MXene-1%PU-EP/CF composite compared to the desized CF/EP. The uniform dispersion of conductive MXene nanosheets and the inherent conductivity of the CF skeleton resulted in a 123% and 25% increase in out-of-plane and in-plane electrical conductivity. The conductive MXene-PU hybrid network enabled highly sensitive and reliable in situ damage sensing capabilities. The 0.1%MXene-1%PU-EP/CF composite exhibited a maximum electromagnetic interference (EMI) shielding effectiveness (SE) of 27.8 dB, attributed to conductive loss, interfacial polarization, and dipole polarization mechanisms. This study demonstrates the effectiveness of hybridizing MXene and PU in simultaneously enhancing the mechanical, electrical, in situ damage sensing, and EMI shielding properties of carbon fiber reinforced polymer (CFRP) composites, providing valuable insights for future research in multifunctional composite materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信