Jiamin Fu, Han Su, Jing Luo, Xiaona Li, Jianwen Liang, Changhong Wang, Jung Tae Kim, Yang Hu, Feipeng Zhao, Shumin Zhang, Hui Duan, Xiaoge Hao, Weihan Li, Jian Peng, Jue Liu, Shuo Wang, Tsun-Kong Sham, Xueliang Sun
{"title":"超离子卤化物固态电解质中的化学键共价","authors":"Jiamin Fu, Han Su, Jing Luo, Xiaona Li, Jianwen Liang, Changhong Wang, Jung Tae Kim, Yang Hu, Feipeng Zhao, Shumin Zhang, Hui Duan, Xiaoge Hao, Weihan Li, Jian Peng, Jue Liu, Shuo Wang, Tsun-Kong Sham, Xueliang Sun","doi":"10.1002/anie.202508835","DOIUrl":null,"url":null,"abstract":"Halide solid-state electrolytes (SSEs) are promising superionic conductors with high oxidative stability and ionic conductivity, making them attractive for all-solid-state lithium-ion batteries. However, most studies have focused on ion-stacking structures, overlooking the role of bond characteristics in ionic transport. Here, we investigate bond dynamics and the superionic transition (SIT) in bromide electrolyte, Li3InBr6, using synchrotron X-ray techniques and ab initio molecular dynamics (AIMD) simulations. We demonstrate that the SIT in halide SSEs is driven by a thermally induced transition in bonding character (ionic to covalent) rather than a change in crystal phase. AIMD simulations further reveal enhanced Li⁺ diffusion and collective anion motion at elevated temperatures. Expanding our study to Li3LnBr6 (Ln = Gd, Tb, Ho, Tm, Lu), we confirm the widespread occurrence of SIT in this material class, with Li3GdBr6 exhibiting the highest ionic conductivity (5.2 mS cm-1 at 298 K). More importantly, the ionic-covalent transition is highly tunable through electrolyte modifications, such as cation/anion substitution and synthesis methods. Our findings provide a new perspective on ionic transport, highlighting the critical role of chemical bond characteristics in halide SSEs.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"2 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical Bond Covalency in Superionic Halide Solid-State Electrolytes\",\"authors\":\"Jiamin Fu, Han Su, Jing Luo, Xiaona Li, Jianwen Liang, Changhong Wang, Jung Tae Kim, Yang Hu, Feipeng Zhao, Shumin Zhang, Hui Duan, Xiaoge Hao, Weihan Li, Jian Peng, Jue Liu, Shuo Wang, Tsun-Kong Sham, Xueliang Sun\",\"doi\":\"10.1002/anie.202508835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Halide solid-state electrolytes (SSEs) are promising superionic conductors with high oxidative stability and ionic conductivity, making them attractive for all-solid-state lithium-ion batteries. However, most studies have focused on ion-stacking structures, overlooking the role of bond characteristics in ionic transport. Here, we investigate bond dynamics and the superionic transition (SIT) in bromide electrolyte, Li3InBr6, using synchrotron X-ray techniques and ab initio molecular dynamics (AIMD) simulations. We demonstrate that the SIT in halide SSEs is driven by a thermally induced transition in bonding character (ionic to covalent) rather than a change in crystal phase. AIMD simulations further reveal enhanced Li⁺ diffusion and collective anion motion at elevated temperatures. Expanding our study to Li3LnBr6 (Ln = Gd, Tb, Ho, Tm, Lu), we confirm the widespread occurrence of SIT in this material class, with Li3GdBr6 exhibiting the highest ionic conductivity (5.2 mS cm-1 at 298 K). More importantly, the ionic-covalent transition is highly tunable through electrolyte modifications, such as cation/anion substitution and synthesis methods. Our findings provide a new perspective on ionic transport, highlighting the critical role of chemical bond characteristics in halide SSEs.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202508835\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202508835","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Chemical Bond Covalency in Superionic Halide Solid-State Electrolytes
Halide solid-state electrolytes (SSEs) are promising superionic conductors with high oxidative stability and ionic conductivity, making them attractive for all-solid-state lithium-ion batteries. However, most studies have focused on ion-stacking structures, overlooking the role of bond characteristics in ionic transport. Here, we investigate bond dynamics and the superionic transition (SIT) in bromide electrolyte, Li3InBr6, using synchrotron X-ray techniques and ab initio molecular dynamics (AIMD) simulations. We demonstrate that the SIT in halide SSEs is driven by a thermally induced transition in bonding character (ionic to covalent) rather than a change in crystal phase. AIMD simulations further reveal enhanced Li⁺ diffusion and collective anion motion at elevated temperatures. Expanding our study to Li3LnBr6 (Ln = Gd, Tb, Ho, Tm, Lu), we confirm the widespread occurrence of SIT in this material class, with Li3GdBr6 exhibiting the highest ionic conductivity (5.2 mS cm-1 at 298 K). More importantly, the ionic-covalent transition is highly tunable through electrolyte modifications, such as cation/anion substitution and synthesis methods. Our findings provide a new perspective on ionic transport, highlighting the critical role of chemical bond characteristics in halide SSEs.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.