先进锌金属电池用锂盐驱动电双层调制实现氟化间相

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ziwei Zhao, Pengcheng Li, Yuxuan Wu, Ziwei Chai, Hao Zhang, Ge Li
{"title":"先进锌金属电池用锂盐驱动电双层调制实现氟化间相","authors":"Ziwei Zhao, Pengcheng Li, Yuxuan Wu, Ziwei Chai, Hao Zhang, Ge Li","doi":"10.1002/adfm.202506270","DOIUrl":null,"url":null,"abstract":"High-concentration electrolytes show promise in zinc metal batteries, but low zinc salt solubility limits options. This study introduces a highly soluble, reduction-active lithium salt into conventional electrolytes. By modifying the solvation structure and electric double layer, the reversibility of the zinc anode is enhanced. At the cathode, ion absorption on the surface leads to a restructured electric double layer, thereby reducing the dissolution of active materials. With this electrolyte, Zn//Cu half-cells exhibit over 1300 cycle lifespan with an average columbic efficiency of 99.60%. Furthermore, the full-cell with high mass loading (5 mg cm<sup>−2</sup>) NaV<sub>3</sub>O<sub>8</sub>·1.5 H<sub>2</sub>O (NVO) cathode and a low negative-to-positive (N/P) ratio of 3 retains 95% capacity after 250 cycles. Even at −45 °C, the capacity retention of the battery is almost 100% after 500 cycles. This work highlights the potential of high-concentration lithium salts to improve the stability of aqueous zinc batteries by modulating solvation structures and interfacial chemistry.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"134 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorinated Interphase Enabled by Lithium Salt-Driven Electrical Double-Layer Modulation for Advanced Zinc Metal Batteries\",\"authors\":\"Ziwei Zhao, Pengcheng Li, Yuxuan Wu, Ziwei Chai, Hao Zhang, Ge Li\",\"doi\":\"10.1002/adfm.202506270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-concentration electrolytes show promise in zinc metal batteries, but low zinc salt solubility limits options. This study introduces a highly soluble, reduction-active lithium salt into conventional electrolytes. By modifying the solvation structure and electric double layer, the reversibility of the zinc anode is enhanced. At the cathode, ion absorption on the surface leads to a restructured electric double layer, thereby reducing the dissolution of active materials. With this electrolyte, Zn//Cu half-cells exhibit over 1300 cycle lifespan with an average columbic efficiency of 99.60%. Furthermore, the full-cell with high mass loading (5 mg cm<sup>−2</sup>) NaV<sub>3</sub>O<sub>8</sub>·1.5 H<sub>2</sub>O (NVO) cathode and a low negative-to-positive (N/P) ratio of 3 retains 95% capacity after 250 cycles. Even at −45 °C, the capacity retention of the battery is almost 100% after 500 cycles. This work highlights the potential of high-concentration lithium salts to improve the stability of aqueous zinc batteries by modulating solvation structures and interfacial chemistry.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"134 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202506270\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202506270","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高浓度电解质在锌金属电池中显示出前景,但低锌盐溶解度限制了选择。本研究将一种高可溶性、还原活性的锂盐引入到常规电解质中。通过改变溶剂化结构和双电层,提高锌阳极的可逆性。在阴极,离子在表面的吸收导致重构的双电层,从而减少活性物质的溶解。使用这种电解质,锌/铜半电池的循环寿命超过1300次,平均柱效率为99.60%。此外,高质量负载(5 mg cm−2)的NaV3O8·1.5 H2O (NVO)阴极和低负正(N/P)比(3)的全电池在250次循环后仍保持95%的容量。即使在- 45°C下,电池在500次循环后的容量保持率几乎为100%。这项工作强调了高浓度锂盐通过调节溶剂化结构和界面化学来改善水性锌电池稳定性的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fluorinated Interphase Enabled by Lithium Salt-Driven Electrical Double-Layer Modulation for Advanced Zinc Metal Batteries

Fluorinated Interphase Enabled by Lithium Salt-Driven Electrical Double-Layer Modulation for Advanced Zinc Metal Batteries
High-concentration electrolytes show promise in zinc metal batteries, but low zinc salt solubility limits options. This study introduces a highly soluble, reduction-active lithium salt into conventional electrolytes. By modifying the solvation structure and electric double layer, the reversibility of the zinc anode is enhanced. At the cathode, ion absorption on the surface leads to a restructured electric double layer, thereby reducing the dissolution of active materials. With this electrolyte, Zn//Cu half-cells exhibit over 1300 cycle lifespan with an average columbic efficiency of 99.60%. Furthermore, the full-cell with high mass loading (5 mg cm−2) NaV3O8·1.5 H2O (NVO) cathode and a low negative-to-positive (N/P) ratio of 3 retains 95% capacity after 250 cycles. Even at −45 °C, the capacity retention of the battery is almost 100% after 500 cycles. This work highlights the potential of high-concentration lithium salts to improve the stability of aqueous zinc batteries by modulating solvation structures and interfacial chemistry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信