抗钙钛矿型Ni3InC0.5锚定在缺陷纳米金刚石-石墨烯上用于高效乙炔半加氢

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chang-Song Ma, Wenxuan Fan, Yuan Kong, Cong Xu, Chenyang Dong, Shi-Long Xu, Ming Zuo, Lu-Jie Zuo, Xinming Nie, Wen-An Tie, Xiao-Yan Tian, Bo Wang, Yan Yan, Hai-Wei Liang, Mingkai Liu
{"title":"抗钙钛矿型Ni3InC0.5锚定在缺陷纳米金刚石-石墨烯上用于高效乙炔半加氢","authors":"Chang-Song Ma, Wenxuan Fan, Yuan Kong, Cong Xu, Chenyang Dong, Shi-Long Xu, Ming Zuo, Lu-Jie Zuo, Xinming Nie, Wen-An Tie, Xiao-Yan Tian, Bo Wang, Yan Yan, Hai-Wei Liang, Mingkai Liu","doi":"10.1002/adfm.202506717","DOIUrl":null,"url":null,"abstract":"Designing low-cost, nontoxic, and earth-abundant transition metal catalysts for the selective hydrogenation of alkynes is important but high selectivity and hydrogenation activity simultaneously remains challenging. Herein, an anti-perovskite crystal structure Ni<sub>3</sub>InC<sub>0.5</sub> catalyst supported on a defective nanodiamond graphene (ND@G) is reported, which exhibits excellent catalytic performance for the selective conversion of C<sub>2</sub>H<sub>2</sub> to C<sub>2</sub>H<sub>4</sub>, i.e., with high conversion (95%), high selectivity (85%), and good stability (over 250 h). Density functional theory calculations and performance analysis reveal that synergistic effect between ND@G support and Ni<sub>3</sub>InC<sub>0.5</sub> nanoparticles enable highly efficient C<sub>2</sub>H<sub>2</sub> semi-hydrogenation. ND@G support makes Ni more electron-rich through strong metal-support interactions, as a result of reducing the energy barrier of rate determining step and improving hydrogenation activity. Meanwhile, the crystal geometric structure of Ni<sub>3</sub>InC<sub>0.5</sub> can effectively promote desorption of C<sub>2</sub>H<sub>4</sub> and suppressed the reaction pathway of C<sub>2</sub>H<sub>4</sub> over-hydrogenation, thus improved the semi-hydrogenation selectivity. This work provides insights into the design of anti-perovskite type catalysts with engineered metal-support interactions, offering potential applications in industrial catalysis.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"8 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-Perovskite Type Ni3InC0.5 Anchored on Defective Nano Diamond-Graphene for Highly Efficient Acetylene Semi-Hydrogenation\",\"authors\":\"Chang-Song Ma, Wenxuan Fan, Yuan Kong, Cong Xu, Chenyang Dong, Shi-Long Xu, Ming Zuo, Lu-Jie Zuo, Xinming Nie, Wen-An Tie, Xiao-Yan Tian, Bo Wang, Yan Yan, Hai-Wei Liang, Mingkai Liu\",\"doi\":\"10.1002/adfm.202506717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing low-cost, nontoxic, and earth-abundant transition metal catalysts for the selective hydrogenation of alkynes is important but high selectivity and hydrogenation activity simultaneously remains challenging. Herein, an anti-perovskite crystal structure Ni<sub>3</sub>InC<sub>0.5</sub> catalyst supported on a defective nanodiamond graphene (ND@G) is reported, which exhibits excellent catalytic performance for the selective conversion of C<sub>2</sub>H<sub>2</sub> to C<sub>2</sub>H<sub>4</sub>, i.e., with high conversion (95%), high selectivity (85%), and good stability (over 250 h). Density functional theory calculations and performance analysis reveal that synergistic effect between ND@G support and Ni<sub>3</sub>InC<sub>0.5</sub> nanoparticles enable highly efficient C<sub>2</sub>H<sub>2</sub> semi-hydrogenation. ND@G support makes Ni more electron-rich through strong metal-support interactions, as a result of reducing the energy barrier of rate determining step and improving hydrogenation activity. Meanwhile, the crystal geometric structure of Ni<sub>3</sub>InC<sub>0.5</sub> can effectively promote desorption of C<sub>2</sub>H<sub>4</sub> and suppressed the reaction pathway of C<sub>2</sub>H<sub>4</sub> over-hydrogenation, thus improved the semi-hydrogenation selectivity. This work provides insights into the design of anti-perovskite type catalysts with engineered metal-support interactions, offering potential applications in industrial catalysis.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202506717\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202506717","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

设计低成本、无毒、储量丰富的过渡金属催化剂用于炔烃的选择性加氢是很重要的,但同时具有高选择性和高加氢活性仍然是一个挑战。本文报道了一种负载在缺陷纳米金刚石石墨烯(ND@G)上的反钙钛矿晶体结构Ni3InC0.5催化剂,该催化剂在C2H2选择性转化为C2H4方面表现出优异的催化性能,即转化率高(95%),选择性高(85%),稳定性好(超过250 h)。密度泛函理论计算和性能分析表明,ND@G载体与Ni3InC0.5纳米颗粒之间的协同作用能够实现高效的C2H2半加氢反应。ND@G载体通过强的金属-载体相互作用使Ni更富电子,降低了速率决定步骤的能垒,提高了加氢活性。同时,Ni3InC0.5的晶体几何结构能有效促进C2H4的解吸,抑制C2H4过加氢的反应途径,从而提高半加氢选择性。这项工作为设计具有工程金属支撑相互作用的反钙钛矿型催化剂提供了见解,为工业催化提供了潜在的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Anti-Perovskite Type Ni3InC0.5 Anchored on Defective Nano Diamond-Graphene for Highly Efficient Acetylene Semi-Hydrogenation

Anti-Perovskite Type Ni3InC0.5 Anchored on Defective Nano Diamond-Graphene for Highly Efficient Acetylene Semi-Hydrogenation
Designing low-cost, nontoxic, and earth-abundant transition metal catalysts for the selective hydrogenation of alkynes is important but high selectivity and hydrogenation activity simultaneously remains challenging. Herein, an anti-perovskite crystal structure Ni3InC0.5 catalyst supported on a defective nanodiamond graphene (ND@G) is reported, which exhibits excellent catalytic performance for the selective conversion of C2H2 to C2H4, i.e., with high conversion (95%), high selectivity (85%), and good stability (over 250 h). Density functional theory calculations and performance analysis reveal that synergistic effect between ND@G support and Ni3InC0.5 nanoparticles enable highly efficient C2H2 semi-hydrogenation. ND@G support makes Ni more electron-rich through strong metal-support interactions, as a result of reducing the energy barrier of rate determining step and improving hydrogenation activity. Meanwhile, the crystal geometric structure of Ni3InC0.5 can effectively promote desorption of C2H4 and suppressed the reaction pathway of C2H4 over-hydrogenation, thus improved the semi-hydrogenation selectivity. This work provides insights into the design of anti-perovskite type catalysts with engineered metal-support interactions, offering potential applications in industrial catalysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信