微秒内异质结构过渡金属二硫族化物和碳化物的闪蒸热冲击合成

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Euichul Shin, Dong-Ha Kim, Mingyu Sagong, Jacob Choe, Seo Hak Park, Jaewan Ahn, Jong Won Baek, Minhyun Kim, Sungyoon Woo, Yujang Cho, Seon-Jin Choi, Sang-Joon Kim, Jong Min Yuk, Ju Li, Sung-Yool Choi, Il-Doo Kim
{"title":"微秒内异质结构过渡金属二硫族化物和碳化物的闪蒸热冲击合成","authors":"Euichul Shin, Dong-Ha Kim, Mingyu Sagong, Jacob Choe, Seo Hak Park, Jaewan Ahn, Jong Won Baek, Minhyun Kim, Sungyoon Woo, Yujang Cho, Seon-Jin Choi, Sang-Joon Kim, Jong Min Yuk, Ju Li, Sung-Yool Choi, Il-Doo Kim","doi":"10.1002/adma.202419790","DOIUrl":null,"url":null,"abstract":"Transition metal dichalcogenides (TMDs) offer remarkable potential for next-generation functional devices, but achieving ultrafast synthesis with precise structural and phase control under ambient conditions remains a significant challenge. Here, ultrafast photothermal annealing assisted by graphene oxide is introduced for precise phase control of TMDs forming a heterostructure. This process reaches adjustable temperatures between 1 768 and 3 162 K within 10 ms, featuring rapid kinetics, enabling the synthesis of various metastable nanomaterials in ambient air. The TMDs form directly from precursors above 1 700 K, while temperatures above 2 300 K induce carbothermic reactions, producing metastable transition metal carbides (TMCs) and core@shell heterostructures (TMC@TMD and TMC@carbon). Introducing seed materials like single metals, metal oxides, and multielement/high-entropy alloys enables the formation of core(seed)@shell (TMD) heterostructures. The resulting composites demonstrated significantly enhanced catalytic performance in gas sensing and hydrogen production. This robust and versatile photothermal annealing method holds broad potential for designing advanced heterostructure-engineered TMD and/or TMC composites tailored for targeted applications.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"16 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flash Thermal Shock Synthesis of Heterostructured Transition Metal Dichalcogenides and Carbides in Milliseconds\",\"authors\":\"Euichul Shin, Dong-Ha Kim, Mingyu Sagong, Jacob Choe, Seo Hak Park, Jaewan Ahn, Jong Won Baek, Minhyun Kim, Sungyoon Woo, Yujang Cho, Seon-Jin Choi, Sang-Joon Kim, Jong Min Yuk, Ju Li, Sung-Yool Choi, Il-Doo Kim\",\"doi\":\"10.1002/adma.202419790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transition metal dichalcogenides (TMDs) offer remarkable potential for next-generation functional devices, but achieving ultrafast synthesis with precise structural and phase control under ambient conditions remains a significant challenge. Here, ultrafast photothermal annealing assisted by graphene oxide is introduced for precise phase control of TMDs forming a heterostructure. This process reaches adjustable temperatures between 1 768 and 3 162 K within 10 ms, featuring rapid kinetics, enabling the synthesis of various metastable nanomaterials in ambient air. The TMDs form directly from precursors above 1 700 K, while temperatures above 2 300 K induce carbothermic reactions, producing metastable transition metal carbides (TMCs) and core@shell heterostructures (TMC@TMD and TMC@carbon). Introducing seed materials like single metals, metal oxides, and multielement/high-entropy alloys enables the formation of core(seed)@shell (TMD) heterostructures. The resulting composites demonstrated significantly enhanced catalytic performance in gas sensing and hydrogen production. This robust and versatile photothermal annealing method holds broad potential for designing advanced heterostructure-engineered TMD and/or TMC composites tailored for targeted applications.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202419790\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202419790","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属二硫族化合物(TMDs)在下一代功能器件中具有巨大的潜力,但在环境条件下实现精确的结构和相位控制的超快速合成仍然是一个重大挑战。本文介绍了氧化石墨烯辅助下的超快光热退火,用于形成异质结构的tmd的精确相位控制。该工艺在10 ms内达到1 768 ~ 3 162 K的可调温度,具有快速的动力学特点,使各种亚稳纳米材料能够在环境空气中合成。在1 700 K以上直接由前驱体形成tmd,在2 300 K以上诱导碳热反应,生成亚稳过渡金属碳化物(TMCs)和core@shell异质结构(TMC@TMD和TMC@carbon)。引入种子材料,如单金属、金属氧化物和多元素/高熵合金,可以形成核(种子)@壳(TMD)异质结构。所得复合材料在气敏和制氢方面表现出显著增强的催化性能。这种强大而通用的光热退火方法在设计先进异质结构工程TMD和/或TMC复合材料方面具有广泛的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Flash Thermal Shock Synthesis of Heterostructured Transition Metal Dichalcogenides and Carbides in Milliseconds

Flash Thermal Shock Synthesis of Heterostructured Transition Metal Dichalcogenides and Carbides in Milliseconds
Transition metal dichalcogenides (TMDs) offer remarkable potential for next-generation functional devices, but achieving ultrafast synthesis with precise structural and phase control under ambient conditions remains a significant challenge. Here, ultrafast photothermal annealing assisted by graphene oxide is introduced for precise phase control of TMDs forming a heterostructure. This process reaches adjustable temperatures between 1 768 and 3 162 K within 10 ms, featuring rapid kinetics, enabling the synthesis of various metastable nanomaterials in ambient air. The TMDs form directly from precursors above 1 700 K, while temperatures above 2 300 K induce carbothermic reactions, producing metastable transition metal carbides (TMCs) and core@shell heterostructures (TMC@TMD and TMC@carbon). Introducing seed materials like single metals, metal oxides, and multielement/high-entropy alloys enables the formation of core(seed)@shell (TMD) heterostructures. The resulting composites demonstrated significantly enhanced catalytic performance in gas sensing and hydrogen production. This robust and versatile photothermal annealing method holds broad potential for designing advanced heterostructure-engineered TMD and/or TMC composites tailored for targeted applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信