Xiaochong Li, Yang Liu, Edmond C. N. Wong, Mitchell A. Winnik
{"title":"介孔二氧化硅纳米颗粒上聚乙二醇链动力学的核磁共振研究,以减少非特异性结合","authors":"Xiaochong Li, Yang Liu, Edmond C. N. Wong, Mitchell A. Winnik","doi":"10.1039/d5nr00936g","DOIUrl":null,"url":null,"abstract":"Mesoporous silica nanoparticles (MSNs) have garnered significant attention for diverse bioscience applications due to their tunable surface properties and high biocompatibility. Functionalization with hydrophilic polymers like poly(ethylene glycol) (PEG) <em>via</em> silane chemistry is commonly employed to reduce non-specific protein adsorption and enhance stability in physiological environments. However, characterizing surface ligands, particularly in aqueous environments, remains a key challenge. In this study, we utilized a comprehensive suite of nuclear magnetic resonance (NMR) techniques, including <small><sup>1</sup></small>H quantitative NMR (qNMR), diffusion-ordered spectroscopy (DOSY), and relaxation time measurements (<em>T</em><small><sub>1</sub></small> and <em>T</em><small><sub>2</sub></small>), to investigate PEG chain dynamics and conformation on MSN surfaces. Our analysis revealed the relationship between PEG grafting density and chain mobility, demonstrating a transition to a dense brush conformation at higher densities. DOSY and <em>T</em><small><sub>2</sub></small> experiments enabled the differentiation of covalently bound PEG from loosely adsorbed molecules. This approach provided a robust method for evaluating the efficacy of surface functionalization, ensuring the quality and consistency of PEGylated nanoparticles. Furthermore, we examined the relationship between NMR-derived parameters and protein adsorption resistance, demonstrating that densely packed PEG chains with a “dense brush” conformation can effectively reduce non-specific adsorption of human serum albumin. These findings provided valuable insights into the design of PEGylated MSNs, supporting improved quality, consistency, and functionality for biomedical applications.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"43 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NMR studies of PEG chain dynamics on mesoporous silica nanoparticles for minimizing non-specific binding\",\"authors\":\"Xiaochong Li, Yang Liu, Edmond C. N. Wong, Mitchell A. Winnik\",\"doi\":\"10.1039/d5nr00936g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mesoporous silica nanoparticles (MSNs) have garnered significant attention for diverse bioscience applications due to their tunable surface properties and high biocompatibility. Functionalization with hydrophilic polymers like poly(ethylene glycol) (PEG) <em>via</em> silane chemistry is commonly employed to reduce non-specific protein adsorption and enhance stability in physiological environments. However, characterizing surface ligands, particularly in aqueous environments, remains a key challenge. In this study, we utilized a comprehensive suite of nuclear magnetic resonance (NMR) techniques, including <small><sup>1</sup></small>H quantitative NMR (qNMR), diffusion-ordered spectroscopy (DOSY), and relaxation time measurements (<em>T</em><small><sub>1</sub></small> and <em>T</em><small><sub>2</sub></small>), to investigate PEG chain dynamics and conformation on MSN surfaces. Our analysis revealed the relationship between PEG grafting density and chain mobility, demonstrating a transition to a dense brush conformation at higher densities. DOSY and <em>T</em><small><sub>2</sub></small> experiments enabled the differentiation of covalently bound PEG from loosely adsorbed molecules. This approach provided a robust method for evaluating the efficacy of surface functionalization, ensuring the quality and consistency of PEGylated nanoparticles. Furthermore, we examined the relationship between NMR-derived parameters and protein adsorption resistance, demonstrating that densely packed PEG chains with a “dense brush” conformation can effectively reduce non-specific adsorption of human serum albumin. These findings provided valuable insights into the design of PEGylated MSNs, supporting improved quality, consistency, and functionality for biomedical applications.\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nr00936g\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nr00936g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
NMR studies of PEG chain dynamics on mesoporous silica nanoparticles for minimizing non-specific binding
Mesoporous silica nanoparticles (MSNs) have garnered significant attention for diverse bioscience applications due to their tunable surface properties and high biocompatibility. Functionalization with hydrophilic polymers like poly(ethylene glycol) (PEG) via silane chemistry is commonly employed to reduce non-specific protein adsorption and enhance stability in physiological environments. However, characterizing surface ligands, particularly in aqueous environments, remains a key challenge. In this study, we utilized a comprehensive suite of nuclear magnetic resonance (NMR) techniques, including 1H quantitative NMR (qNMR), diffusion-ordered spectroscopy (DOSY), and relaxation time measurements (T1 and T2), to investigate PEG chain dynamics and conformation on MSN surfaces. Our analysis revealed the relationship between PEG grafting density and chain mobility, demonstrating a transition to a dense brush conformation at higher densities. DOSY and T2 experiments enabled the differentiation of covalently bound PEG from loosely adsorbed molecules. This approach provided a robust method for evaluating the efficacy of surface functionalization, ensuring the quality and consistency of PEGylated nanoparticles. Furthermore, we examined the relationship between NMR-derived parameters and protein adsorption resistance, demonstrating that densely packed PEG chains with a “dense brush” conformation can effectively reduce non-specific adsorption of human serum albumin. These findings provided valuable insights into the design of PEGylated MSNs, supporting improved quality, consistency, and functionality for biomedical applications.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.