Fe2O3纳米管修饰ZnFe2O4开放纳米笼用于高灵敏度H2S检测

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mingyang Zhu, Fan Wang, Cuiping Gu, Junjie Li, Enhao Sun, Jiarui Huang
{"title":"Fe2O3纳米管修饰ZnFe2O4开放纳米笼用于高灵敏度H2S检测","authors":"Mingyang Zhu, Fan Wang, Cuiping Gu, Junjie Li, Enhao Sun, Jiarui Huang","doi":"10.1021/acsami.5c02415","DOIUrl":null,"url":null,"abstract":"The rational integration of nanomaterials with different functions is a new solution to improve the gas-sensing performance of metal oxide gas sensors. In this paper, Fe<sub>2</sub>O<sub>3</sub> nanotube-decorated ZnFe<sub>2</sub>O<sub>4</sub> open nanocages and nanoboxes with a hierarchical complex superstructure are prepared by an autotemplate epitaxial growth strategy combined with an annealing process. The gas sensitivity test result shows that the Fe<sub>2</sub>O<sub>3</sub> nanotube-decorated ZnFe<sub>2</sub>O<sub>4</sub> open nanocage exhibited good gas selectivity for H<sub>2</sub>S at a relatively low operating temperature (140 °C) with fast response/recovery time (12/96 s) and a detection limit as low as 39 ppb. The superior gas-sensing performance of Fe<sub>2</sub>O<sub>3</sub> nanotube-decorated ZnFe<sub>2</sub>O<sub>4</sub> open nanocages is attributed not only to the combination of open cavities and porous shell structures but also to the highly active tubular Fe<sub>2</sub>O<sub>3</sub> subunits with ultrathin wall thickness to promote the adsorption of gas molecules and the migration of carriers. Quasi <i>in situ</i> X-ray photoelectron spectroscopy and <i>in situ</i> infrared characterization reveal that H<sub>2</sub>S is physically adsorbed in an unstable state on the surface of the Fe<sub>2</sub>O<sub>3</sub>-nanotube-decorated ZnFe<sub>2</sub>O<sub>4</sub> open nanocages during the gas-sensing response. This unstable adsorption facilitates faster desorption, thereby significantly reducing the sensor’s response/recovery times. This work not only provides a novel strategy for designing high-performance H<sub>2</sub>S gas-sensing materials but also proposes a promising approach for engineering complex nanostructures with enhanced functionalities.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"25 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fe2O3 Nanotube-Decorated ZnFe2O4 Open Nanocages for High-Sensitive H2S Detection\",\"authors\":\"Mingyang Zhu, Fan Wang, Cuiping Gu, Junjie Li, Enhao Sun, Jiarui Huang\",\"doi\":\"10.1021/acsami.5c02415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rational integration of nanomaterials with different functions is a new solution to improve the gas-sensing performance of metal oxide gas sensors. In this paper, Fe<sub>2</sub>O<sub>3</sub> nanotube-decorated ZnFe<sub>2</sub>O<sub>4</sub> open nanocages and nanoboxes with a hierarchical complex superstructure are prepared by an autotemplate epitaxial growth strategy combined with an annealing process. The gas sensitivity test result shows that the Fe<sub>2</sub>O<sub>3</sub> nanotube-decorated ZnFe<sub>2</sub>O<sub>4</sub> open nanocage exhibited good gas selectivity for H<sub>2</sub>S at a relatively low operating temperature (140 °C) with fast response/recovery time (12/96 s) and a detection limit as low as 39 ppb. The superior gas-sensing performance of Fe<sub>2</sub>O<sub>3</sub> nanotube-decorated ZnFe<sub>2</sub>O<sub>4</sub> open nanocages is attributed not only to the combination of open cavities and porous shell structures but also to the highly active tubular Fe<sub>2</sub>O<sub>3</sub> subunits with ultrathin wall thickness to promote the adsorption of gas molecules and the migration of carriers. Quasi <i>in situ</i> X-ray photoelectron spectroscopy and <i>in situ</i> infrared characterization reveal that H<sub>2</sub>S is physically adsorbed in an unstable state on the surface of the Fe<sub>2</sub>O<sub>3</sub>-nanotube-decorated ZnFe<sub>2</sub>O<sub>4</sub> open nanocages during the gas-sensing response. This unstable adsorption facilitates faster desorption, thereby significantly reducing the sensor’s response/recovery times. This work not only provides a novel strategy for designing high-performance H<sub>2</sub>S gas-sensing materials but also proposes a promising approach for engineering complex nanostructures with enhanced functionalities.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c02415\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c02415","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

不同功能纳米材料的合理集成是提高金属氧化物气体传感器气敏性能的新途径。本文采用自模板外延生长策略结合退火工艺制备了Fe2O3纳米管修饰的具有层次复杂上层结构的ZnFe2O4开放纳米笼和纳米盒。气敏试验结果表明,Fe2O3纳米管修饰的ZnFe2O4开放式纳米笼在相对较低的工作温度(140℃)下对H2S具有良好的气体选择性,响应/恢复时间快(12/96 s),检测限低至39 ppb。Fe2O3纳米管修饰的ZnFe2O4开放纳米笼具有优异的气敏性能,这不仅归功于开放腔和多孔壳结构的结合,还归功于具有超薄壁厚的高活性管状Fe2O3亚基促进了气体分子的吸附和载流子的迁移。准原位x射线光电子能谱和原位红外表征表明,在气敏响应过程中,H2S以不稳定的状态物理吸附在fe2o3 -纳米管修饰的ZnFe2O4开放纳米笼表面。这种不稳定的吸附有助于更快的解吸,从而显着减少传感器的响应/恢复时间。这项工作不仅为设计高性能H2S气敏材料提供了一种新的策略,而且为具有增强功能的复杂纳米结构的工程设计提供了一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fe2O3 Nanotube-Decorated ZnFe2O4 Open Nanocages for High-Sensitive H2S Detection

Fe2O3 Nanotube-Decorated ZnFe2O4 Open Nanocages for High-Sensitive H2S Detection
The rational integration of nanomaterials with different functions is a new solution to improve the gas-sensing performance of metal oxide gas sensors. In this paper, Fe2O3 nanotube-decorated ZnFe2O4 open nanocages and nanoboxes with a hierarchical complex superstructure are prepared by an autotemplate epitaxial growth strategy combined with an annealing process. The gas sensitivity test result shows that the Fe2O3 nanotube-decorated ZnFe2O4 open nanocage exhibited good gas selectivity for H2S at a relatively low operating temperature (140 °C) with fast response/recovery time (12/96 s) and a detection limit as low as 39 ppb. The superior gas-sensing performance of Fe2O3 nanotube-decorated ZnFe2O4 open nanocages is attributed not only to the combination of open cavities and porous shell structures but also to the highly active tubular Fe2O3 subunits with ultrathin wall thickness to promote the adsorption of gas molecules and the migration of carriers. Quasi in situ X-ray photoelectron spectroscopy and in situ infrared characterization reveal that H2S is physically adsorbed in an unstable state on the surface of the Fe2O3-nanotube-decorated ZnFe2O4 open nanocages during the gas-sensing response. This unstable adsorption facilitates faster desorption, thereby significantly reducing the sensor’s response/recovery times. This work not only provides a novel strategy for designing high-performance H2S gas-sensing materials but also proposes a promising approach for engineering complex nanostructures with enhanced functionalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信