Daniel Voigt, Leonie Eggers, Katharina-Sophie Isleif, Sina M. Koehlenbeck, Melanie Ast, Oliver Gerberding
{"title":"可调谐相干激光干涉测量:演示40 dB杂散光抑制和与谐振光学腔的兼容性","authors":"Daniel Voigt, Leonie Eggers, Katharina-Sophie Isleif, Sina M. Koehlenbeck, Melanie Ast, Oliver Gerberding","doi":"10.1103/physrevlett.134.213802","DOIUrl":null,"url":null,"abstract":"A major limitation of laser interferometers using continuous wave lasers are parasitic light fields, such as ghost beams, scattered or stray light, that can cause nonlinear noise. This is especially relevant for laser interferometric ground-based gravitational wave detectors. Increasing their sensitivity, particularly at frequencies below 10 Hz, is threatened by the influence of parasitic photons. These can up-convert low-frequency disturbances into phase and amplitude noise inside the relevant measurement band. By artificially tuning the coherence of the lasers, using pseudo-random-noise (PRN) phase modulations, this influence of parasitic fields can be suppressed. As it relies on these fields traveling different paths, it does not sacrifice the coherence for the intentional interference. We demonstrate the feasibility of this technique experimentally, achieving noise suppression levels of 40 dB in a Michelson interferometer with an artificial coherence length below 30 cm. We probe how the suppression depends on the delay mismatch and length of the PRN sequence. We also prove that optical resonators can be operated in the presence of PRN modulation by measuring the behavior of a linear cavity with and without such a modulation. By matching the resonators round-trip length and the PRN sequence repetition length, the classic response is recovered. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"13 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable Coherence Laser Interferometry: Demonstrating 40 dB of Stray Light Suppression and Compatibility with Resonant Optical Cavities\",\"authors\":\"Daniel Voigt, Leonie Eggers, Katharina-Sophie Isleif, Sina M. Koehlenbeck, Melanie Ast, Oliver Gerberding\",\"doi\":\"10.1103/physrevlett.134.213802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A major limitation of laser interferometers using continuous wave lasers are parasitic light fields, such as ghost beams, scattered or stray light, that can cause nonlinear noise. This is especially relevant for laser interferometric ground-based gravitational wave detectors. Increasing their sensitivity, particularly at frequencies below 10 Hz, is threatened by the influence of parasitic photons. These can up-convert low-frequency disturbances into phase and amplitude noise inside the relevant measurement band. By artificially tuning the coherence of the lasers, using pseudo-random-noise (PRN) phase modulations, this influence of parasitic fields can be suppressed. As it relies on these fields traveling different paths, it does not sacrifice the coherence for the intentional interference. We demonstrate the feasibility of this technique experimentally, achieving noise suppression levels of 40 dB in a Michelson interferometer with an artificial coherence length below 30 cm. We probe how the suppression depends on the delay mismatch and length of the PRN sequence. We also prove that optical resonators can be operated in the presence of PRN modulation by measuring the behavior of a linear cavity with and without such a modulation. By matching the resonators round-trip length and the PRN sequence repetition length, the classic response is recovered. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.134.213802\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.213802","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Tunable Coherence Laser Interferometry: Demonstrating 40 dB of Stray Light Suppression and Compatibility with Resonant Optical Cavities
A major limitation of laser interferometers using continuous wave lasers are parasitic light fields, such as ghost beams, scattered or stray light, that can cause nonlinear noise. This is especially relevant for laser interferometric ground-based gravitational wave detectors. Increasing their sensitivity, particularly at frequencies below 10 Hz, is threatened by the influence of parasitic photons. These can up-convert low-frequency disturbances into phase and amplitude noise inside the relevant measurement band. By artificially tuning the coherence of the lasers, using pseudo-random-noise (PRN) phase modulations, this influence of parasitic fields can be suppressed. As it relies on these fields traveling different paths, it does not sacrifice the coherence for the intentional interference. We demonstrate the feasibility of this technique experimentally, achieving noise suppression levels of 40 dB in a Michelson interferometer with an artificial coherence length below 30 cm. We probe how the suppression depends on the delay mismatch and length of the PRN sequence. We also prove that optical resonators can be operated in the presence of PRN modulation by measuring the behavior of a linear cavity with and without such a modulation. By matching the resonators round-trip length and the PRN sequence repetition length, the classic response is recovered. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks