{"title":"变分量子电路的纠缠信息构造","authors":"Alina Joch, Götz S Uhrig and Benedikt Fauseweh","doi":"10.1088/2058-9565/addb6f","DOIUrl":null,"url":null,"abstract":"The variational quantum eigensolver is a promising tool for simulating ground states of quantum many-body systems on noisy quantum computers. Its effectiveness relies heavily on the ansatz, which must be both hardware-efficient for implementation on noisy hardware and problem-specific to avoid local minima and convergence problems. In this article, we explore entanglement-informed ansatz schemes that naturally emerge from specific models, aiming to balance accuracy with minimal use of two-qubit entangling gates. We investigate three models of quasi-1D Hamiltonians focusing on entanglement barriers and long-range interactions. We find that including the entanglement structure in the parameterized quantum circuit reduces the resources necessary to achieve a given accuracy. A better assessment is obtained by analyzing how the ansatz captures the entanglement spectrum. Our comprehensive analysis provides a new perspective on the design of ansätze based on the expected entanglement structure of the approximated state.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"49 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entanglement-informed construction of variational quantum circuits\",\"authors\":\"Alina Joch, Götz S Uhrig and Benedikt Fauseweh\",\"doi\":\"10.1088/2058-9565/addb6f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The variational quantum eigensolver is a promising tool for simulating ground states of quantum many-body systems on noisy quantum computers. Its effectiveness relies heavily on the ansatz, which must be both hardware-efficient for implementation on noisy hardware and problem-specific to avoid local minima and convergence problems. In this article, we explore entanglement-informed ansatz schemes that naturally emerge from specific models, aiming to balance accuracy with minimal use of two-qubit entangling gates. We investigate three models of quasi-1D Hamiltonians focusing on entanglement barriers and long-range interactions. We find that including the entanglement structure in the parameterized quantum circuit reduces the resources necessary to achieve a given accuracy. A better assessment is obtained by analyzing how the ansatz captures the entanglement spectrum. Our comprehensive analysis provides a new perspective on the design of ansätze based on the expected entanglement structure of the approximated state.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/addb6f\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/addb6f","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Entanglement-informed construction of variational quantum circuits
The variational quantum eigensolver is a promising tool for simulating ground states of quantum many-body systems on noisy quantum computers. Its effectiveness relies heavily on the ansatz, which must be both hardware-efficient for implementation on noisy hardware and problem-specific to avoid local minima and convergence problems. In this article, we explore entanglement-informed ansatz schemes that naturally emerge from specific models, aiming to balance accuracy with minimal use of two-qubit entangling gates. We investigate three models of quasi-1D Hamiltonians focusing on entanglement barriers and long-range interactions. We find that including the entanglement structure in the parameterized quantum circuit reduces the resources necessary to achieve a given accuracy. A better assessment is obtained by analyzing how the ansatz captures the entanglement spectrum. Our comprehensive analysis provides a new perspective on the design of ansätze based on the expected entanglement structure of the approximated state.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.