铋铁氧体的磁电去耦

IF 9 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Thien Thanh Dang, Juliana Heiniger-Schell, Astita Dubey, João Nuno Gonçalves, Marianela Escobar Castillo, Daniil Lewin, Ian Chang Jie Yap, Adeleh Mokhles Gerami, Sobhan Mohammadi Fathabad, Dmitry Zyabkin, Doru Constantin Lupascu
{"title":"铋铁氧体的磁电去耦","authors":"Thien Thanh Dang, Juliana Heiniger-Schell, Astita Dubey, João Nuno Gonçalves, Marianela Escobar Castillo, Daniil Lewin, Ian Chang Jie Yap, Adeleh Mokhles Gerami, Sobhan Mohammadi Fathabad, Dmitry Zyabkin, Doru Constantin Lupascu","doi":"10.1103/physrevlett.134.216702","DOIUrl":null,"url":null,"abstract":"It is still an open question if magnetoelectric coupling occurs at the atomic scale in multiferroic BiFeO</a:mi></a:mrow>3</a:mn></a:msub></a:mrow></a:math>. Nuclear solid-state techniques monitor local fields at the atomic scale. Using such an approach, we show that, contrary to our own expectation, ferroelectric and magnetic ordering in bismuth ferrite (<c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:msub><c:mrow><c:mi>BiFeO</c:mi></c:mrow><c:mn>3</c:mn></c:msub></c:mrow></c:math> or BFO) decouple at the unit-cell level. Time differential perturbed angular correlation (TDPAC) data at temperatures below, close, and above the magnetic Néel temperature show that the coupling of the ferroelectric order to magnetization is completely absent at the bismuth site. It is common understanding that the antiferromagnetic order and the cycloidal ordering due to the Dzyaloshinskii-Moriya interaction generate a net zero magnetization of the sample canceling out any magnetoelectric effect at the macroscopic level. Our previous data show that a very large coupling of magnetic moment and electrical distortions arises on the magnetic sublattice (Fe site). The oxygen octahedra around the iron site experience a large tilt due to the onset of magnetic ordering. Nevertheless, the Bi-containing complementary sublattice carrying the largest part of ferroelectric order is practically unaffected by this large structural change in its direct vicinity. The magnetoelectric coupling thus vanishes already at the unit cell level. These experimental results agree well with an density functional theory (DFT) calculation. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"128 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetoelectric Decoupling in Bismuth Ferrite\",\"authors\":\"Thien Thanh Dang, Juliana Heiniger-Schell, Astita Dubey, João Nuno Gonçalves, Marianela Escobar Castillo, Daniil Lewin, Ian Chang Jie Yap, Adeleh Mokhles Gerami, Sobhan Mohammadi Fathabad, Dmitry Zyabkin, Doru Constantin Lupascu\",\"doi\":\"10.1103/physrevlett.134.216702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is still an open question if magnetoelectric coupling occurs at the atomic scale in multiferroic BiFeO</a:mi></a:mrow>3</a:mn></a:msub></a:mrow></a:math>. Nuclear solid-state techniques monitor local fields at the atomic scale. Using such an approach, we show that, contrary to our own expectation, ferroelectric and magnetic ordering in bismuth ferrite (<c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mrow><c:msub><c:mrow><c:mi>BiFeO</c:mi></c:mrow><c:mn>3</c:mn></c:msub></c:mrow></c:math> or BFO) decouple at the unit-cell level. Time differential perturbed angular correlation (TDPAC) data at temperatures below, close, and above the magnetic Néel temperature show that the coupling of the ferroelectric order to magnetization is completely absent at the bismuth site. It is common understanding that the antiferromagnetic order and the cycloidal ordering due to the Dzyaloshinskii-Moriya interaction generate a net zero magnetization of the sample canceling out any magnetoelectric effect at the macroscopic level. Our previous data show that a very large coupling of magnetic moment and electrical distortions arises on the magnetic sublattice (Fe site). The oxygen octahedra around the iron site experience a large tilt due to the onset of magnetic ordering. Nevertheless, the Bi-containing complementary sublattice carrying the largest part of ferroelectric order is practically unaffected by this large structural change in its direct vicinity. The magnetoelectric coupling thus vanishes already at the unit cell level. These experimental results agree well with an density functional theory (DFT) calculation. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"128 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.134.216702\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.216702","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在多铁性BiFeO3中,磁电耦合是否发生在原子尺度上仍然是一个悬而未决的问题。核固态技术在原子尺度上监测局部场。使用这种方法,我们表明,与我们自己的期望相反,铋铁氧体(BiFeO3或BFO)中的铁电和磁有序在单位胞水平上解耦。在低于、接近和高于磁性n温度的温度下,时间差摄动角相关(TDPAC)数据表明,在铋位点,铁电序与磁化强度的耦合完全不存在。人们普遍认为,由于Dzyaloshinskii-Moriya相互作用,反铁磁有序和摆线有序产生了样品的净零磁化,在宏观水平上抵消了任何磁电效应。我们先前的数据表明,磁矩和电畸变在磁亚晶格(铁位)上产生了非常大的耦合。铁位点周围的氧八面体由于磁有序的开始而经历了一个大的倾斜。然而,携带大部分铁电序的含bi互补亚晶格实际上不受其直接附近的这种大结构变化的影响。因此,磁电耦合已经在单位细胞水平上消失了。实验结果与密度泛函理论(DFT)计算结果吻合较好。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetoelectric Decoupling in Bismuth Ferrite
It is still an open question if magnetoelectric coupling occurs at the atomic scale in multiferroic BiFeO3. Nuclear solid-state techniques monitor local fields at the atomic scale. Using such an approach, we show that, contrary to our own expectation, ferroelectric and magnetic ordering in bismuth ferrite (BiFeO3 or BFO) decouple at the unit-cell level. Time differential perturbed angular correlation (TDPAC) data at temperatures below, close, and above the magnetic Néel temperature show that the coupling of the ferroelectric order to magnetization is completely absent at the bismuth site. It is common understanding that the antiferromagnetic order and the cycloidal ordering due to the Dzyaloshinskii-Moriya interaction generate a net zero magnetization of the sample canceling out any magnetoelectric effect at the macroscopic level. Our previous data show that a very large coupling of magnetic moment and electrical distortions arises on the magnetic sublattice (Fe site). The oxygen octahedra around the iron site experience a large tilt due to the onset of magnetic ordering. Nevertheless, the Bi-containing complementary sublattice carrying the largest part of ferroelectric order is practically unaffected by this large structural change in its direct vicinity. The magnetoelectric coupling thus vanishes already at the unit cell level. These experimental results agree well with an density functional theory (DFT) calculation. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信