Yu Fang, Qingqing Liu, Min Tian, Luna Ruan, Kai Chen, Huan Zhang, Zhiqing Yang, Hengqiang Ye, Lihua Zhu
{"title":"铂单原子、簇和纳米粒子对氮掺杂碳对硝基芳烃高效选择性加氢的协同作用","authors":"Yu Fang, Qingqing Liu, Min Tian, Luna Ruan, Kai Chen, Huan Zhang, Zhiqing Yang, Hengqiang Ye, Lihua Zhu","doi":"10.1039/d5ta02865e","DOIUrl":null,"url":null,"abstract":"This work constructs a series of the Pt/NC catalysts with various Pt contents (0.22 wt%, 0.42 wt%, 1.08 wt%) via liquid-phase reduction method and their catalytic behaviors are systematically evaluated for heterogeneous catalytic hydrogenation of nitroarenes. The results show that 1.08% Pt/NC exhibits the most excellent catalytic performance: under quite mild conditions (30 °C, 1.0 MPa H2), it can efficiently convert nitrophenol within just 3 min (90.2% conversion), with nitro-group hydrogenation selectivity > 99% and the TOF of 5298.6 h-1, moreover, it has an extremely ultra-high TOF of 74191.8 h-1 in the hydrogenation reaction of nitrobenzene to aniline, showing ultra-high intrinsic activity. Additionally, using nitrobenzene selective hydrogenation as model reaction, the proposed reaction pathways are provided. Combining with Spherical Aberration Corrected-Transmission Electron Microscope (AC-STEM) and XPS characterizations, it can be known that Pt single atoms, clusters and nanoparticles are together loaded on the surface of nitrogen-doped carbon, and there is electron interaction between pyridinic nitrogen and Pt (electrons transferring from Pt to N). Compared with other catalysts, the electronic interaction between Pt and N in 1.08% Pt/NC is stronger, its adsorption capacity for hydrogen at Pt nanoparticles and clusters and -NO2 group at Pt single atoms via the interaction of of “Ptδ+---O=N” is much more superior, and it can greatly enhance the activity and selectivity of nitro-group hydrogenation.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"5 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergism of Pt single atoms, clusters and nanoparticles on carbon doping with nitrogen for nitroaromatics highly efficient and selective hydrogenation\",\"authors\":\"Yu Fang, Qingqing Liu, Min Tian, Luna Ruan, Kai Chen, Huan Zhang, Zhiqing Yang, Hengqiang Ye, Lihua Zhu\",\"doi\":\"10.1039/d5ta02865e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work constructs a series of the Pt/NC catalysts with various Pt contents (0.22 wt%, 0.42 wt%, 1.08 wt%) via liquid-phase reduction method and their catalytic behaviors are systematically evaluated for heterogeneous catalytic hydrogenation of nitroarenes. The results show that 1.08% Pt/NC exhibits the most excellent catalytic performance: under quite mild conditions (30 °C, 1.0 MPa H2), it can efficiently convert nitrophenol within just 3 min (90.2% conversion), with nitro-group hydrogenation selectivity > 99% and the TOF of 5298.6 h-1, moreover, it has an extremely ultra-high TOF of 74191.8 h-1 in the hydrogenation reaction of nitrobenzene to aniline, showing ultra-high intrinsic activity. Additionally, using nitrobenzene selective hydrogenation as model reaction, the proposed reaction pathways are provided. Combining with Spherical Aberration Corrected-Transmission Electron Microscope (AC-STEM) and XPS characterizations, it can be known that Pt single atoms, clusters and nanoparticles are together loaded on the surface of nitrogen-doped carbon, and there is electron interaction between pyridinic nitrogen and Pt (electrons transferring from Pt to N). Compared with other catalysts, the electronic interaction between Pt and N in 1.08% Pt/NC is stronger, its adsorption capacity for hydrogen at Pt nanoparticles and clusters and -NO2 group at Pt single atoms via the interaction of of “Ptδ+---O=N” is much more superior, and it can greatly enhance the activity and selectivity of nitro-group hydrogenation.\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5ta02865e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5ta02865e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Synergism of Pt single atoms, clusters and nanoparticles on carbon doping with nitrogen for nitroaromatics highly efficient and selective hydrogenation
This work constructs a series of the Pt/NC catalysts with various Pt contents (0.22 wt%, 0.42 wt%, 1.08 wt%) via liquid-phase reduction method and their catalytic behaviors are systematically evaluated for heterogeneous catalytic hydrogenation of nitroarenes. The results show that 1.08% Pt/NC exhibits the most excellent catalytic performance: under quite mild conditions (30 °C, 1.0 MPa H2), it can efficiently convert nitrophenol within just 3 min (90.2% conversion), with nitro-group hydrogenation selectivity > 99% and the TOF of 5298.6 h-1, moreover, it has an extremely ultra-high TOF of 74191.8 h-1 in the hydrogenation reaction of nitrobenzene to aniline, showing ultra-high intrinsic activity. Additionally, using nitrobenzene selective hydrogenation as model reaction, the proposed reaction pathways are provided. Combining with Spherical Aberration Corrected-Transmission Electron Microscope (AC-STEM) and XPS characterizations, it can be known that Pt single atoms, clusters and nanoparticles are together loaded on the surface of nitrogen-doped carbon, and there is electron interaction between pyridinic nitrogen and Pt (electrons transferring from Pt to N). Compared with other catalysts, the electronic interaction between Pt and N in 1.08% Pt/NC is stronger, its adsorption capacity for hydrogen at Pt nanoparticles and clusters and -NO2 group at Pt single atoms via the interaction of of “Ptδ+---O=N” is much more superior, and it can greatly enhance the activity and selectivity of nitro-group hydrogenation.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.