Minghao Chen, Thanh N. Nguyen, Xuefeng Ren, Grace Khuu, Annan S. I. Cook, Yuanchang Zhao, Ahmet Yildiz, Michael Lazarou, James H. Hurley
{"title":"人自噬启动ULK1C:PI3KC3-C1超复合体的结构和激活","authors":"Minghao Chen, Thanh N. Nguyen, Xuefeng Ren, Grace Khuu, Annan S. I. Cook, Yuanchang Zhao, Ahmet Yildiz, Michael Lazarou, James H. Hurley","doi":"10.1038/s41594-025-01557-x","DOIUrl":null,"url":null,"abstract":"The Unc-51-like kinase protein kinase complex (ULK1C) is the most upstream and central player in the initiation of macroautophagy in mammals. Here, we determined the cryo-electron microscopy structure of the human ULK1C core at amino-acid-level resolution. We also determined a moderate-resolution structure of the ULK1C core in complex with another autophagy core complex, the class III phosphatidylinositol 3-OH kinase complex I (PI3KC3-C1). We show that the two complexes coassemble through extensive contacts between the FIP200 scaffold subunit of ULK1C and the VPS15, ATG14 and BECN1 subunits of PI3KC3-C1. The FIP200:ATG13:ULK1 core of ULK1C undergoes a rearrangement from 2:1:1 to 2:2:2 stoichiometry in the presence of PI3KC3-C1. This suggests a structural mechanism for the initiation of autophagy through formation of a ULK1C:PI3KC3-C1 supercomplex and dimerization of ULK1 on the FIP200 scaffold. Autophagy is initiated by the Unc-51-like kinase protein kinase complex (ULK1C) and class III phosphatidylinositol 3-OH kinase complex I (PI3KC3-C1). Here, the authors reveal the structure of the 2:1:1 core of ULK1C and its complex with PI3KC3-C1. ULK1C transitions to a 2:2:2 complex in the presence of PI3KC3-C1, suggesting a mechanism for autophagy induction.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"32 9","pages":"1596-1605"},"PeriodicalIF":10.1000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41594-025-01557-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Structure and activation of the human autophagy-initiating ULK1C:PI3KC3-C1 supercomplex\",\"authors\":\"Minghao Chen, Thanh N. Nguyen, Xuefeng Ren, Grace Khuu, Annan S. I. Cook, Yuanchang Zhao, Ahmet Yildiz, Michael Lazarou, James H. Hurley\",\"doi\":\"10.1038/s41594-025-01557-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Unc-51-like kinase protein kinase complex (ULK1C) is the most upstream and central player in the initiation of macroautophagy in mammals. Here, we determined the cryo-electron microscopy structure of the human ULK1C core at amino-acid-level resolution. We also determined a moderate-resolution structure of the ULK1C core in complex with another autophagy core complex, the class III phosphatidylinositol 3-OH kinase complex I (PI3KC3-C1). We show that the two complexes coassemble through extensive contacts between the FIP200 scaffold subunit of ULK1C and the VPS15, ATG14 and BECN1 subunits of PI3KC3-C1. The FIP200:ATG13:ULK1 core of ULK1C undergoes a rearrangement from 2:1:1 to 2:2:2 stoichiometry in the presence of PI3KC3-C1. This suggests a structural mechanism for the initiation of autophagy through formation of a ULK1C:PI3KC3-C1 supercomplex and dimerization of ULK1 on the FIP200 scaffold. Autophagy is initiated by the Unc-51-like kinase protein kinase complex (ULK1C) and class III phosphatidylinositol 3-OH kinase complex I (PI3KC3-C1). Here, the authors reveal the structure of the 2:1:1 core of ULK1C and its complex with PI3KC3-C1. ULK1C transitions to a 2:2:2 complex in the presence of PI3KC3-C1, suggesting a mechanism for autophagy induction.\",\"PeriodicalId\":49141,\"journal\":{\"name\":\"Nature Structural & Molecular Biology\",\"volume\":\"32 9\",\"pages\":\"1596-1605\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.comhttps://www.nature.com/articles/s41594-025-01557-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Structural & Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41594-025-01557-x\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41594-025-01557-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Structure and activation of the human autophagy-initiating ULK1C:PI3KC3-C1 supercomplex
The Unc-51-like kinase protein kinase complex (ULK1C) is the most upstream and central player in the initiation of macroautophagy in mammals. Here, we determined the cryo-electron microscopy structure of the human ULK1C core at amino-acid-level resolution. We also determined a moderate-resolution structure of the ULK1C core in complex with another autophagy core complex, the class III phosphatidylinositol 3-OH kinase complex I (PI3KC3-C1). We show that the two complexes coassemble through extensive contacts between the FIP200 scaffold subunit of ULK1C and the VPS15, ATG14 and BECN1 subunits of PI3KC3-C1. The FIP200:ATG13:ULK1 core of ULK1C undergoes a rearrangement from 2:1:1 to 2:2:2 stoichiometry in the presence of PI3KC3-C1. This suggests a structural mechanism for the initiation of autophagy through formation of a ULK1C:PI3KC3-C1 supercomplex and dimerization of ULK1 on the FIP200 scaffold. Autophagy is initiated by the Unc-51-like kinase protein kinase complex (ULK1C) and class III phosphatidylinositol 3-OH kinase complex I (PI3KC3-C1). Here, the authors reveal the structure of the 2:1:1 core of ULK1C and its complex with PI3KC3-C1. ULK1C transitions to a 2:2:2 complex in the presence of PI3KC3-C1, suggesting a mechanism for autophagy induction.
期刊介绍:
Nature Structural & Molecular Biology is a comprehensive platform that combines structural and molecular research. Our journal focuses on exploring the functional and mechanistic aspects of biological processes, emphasizing how molecular components collaborate to achieve a particular function. While structural data can shed light on these insights, our publication does not require them as a prerequisite.