现实世界中的情境预期调节低频神经振荡。

Victoria I Nicholls, Alexandra Krugliak, Benjamin Alsbury-Nealy, Klaus Gramann, Alex Clarke
{"title":"现实世界中的情境预期调节低频神经振荡。","authors":"Victoria I Nicholls, Alexandra Krugliak, Benjamin Alsbury-Nealy, Klaus Gramann, Alex Clarke","doi":"10.1162/imag_a_00568","DOIUrl":null,"url":null,"abstract":"<p><p>Objects in expected locations are recognised faster and more accurately than objects in incongruent environments. This congruency effect has a neural component, with increased activity for objects in incongruent environments. Studies have increasingly shown differences between neural processes in realistic environments and tasks, and neural processes in the laboratory. Here, we aimed to push the boundaries of traditional cognitive neuroscience by tracking the congruency effect for objects in real-world environments, outside of the laboratory. We investigated how neural activity is modulated when objects are placed in real environments using augmented reality while recording mobile EEG. Participants approached, viewed, and rated how congruent they found the objects with the environment. We found significant differences in ERPs and higher theta-band power for objects in incongruent contexts than objects in congruent contexts. This demonstrates that real-world contexts impact how objects are processed, and that mobile brain imaging and augmented reality are effective tools to study cognition in the wild.</p>","PeriodicalId":73341,"journal":{"name":"Imaging neuroscience (Cambridge, Mass.)","volume":"3 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617707/pdf/","citationCount":"0","resultStr":"{\"title\":\"Contextual expectations in the real-world modulate low-frequency neural oscillations.\",\"authors\":\"Victoria I Nicholls, Alexandra Krugliak, Benjamin Alsbury-Nealy, Klaus Gramann, Alex Clarke\",\"doi\":\"10.1162/imag_a_00568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Objects in expected locations are recognised faster and more accurately than objects in incongruent environments. This congruency effect has a neural component, with increased activity for objects in incongruent environments. Studies have increasingly shown differences between neural processes in realistic environments and tasks, and neural processes in the laboratory. Here, we aimed to push the boundaries of traditional cognitive neuroscience by tracking the congruency effect for objects in real-world environments, outside of the laboratory. We investigated how neural activity is modulated when objects are placed in real environments using augmented reality while recording mobile EEG. Participants approached, viewed, and rated how congruent they found the objects with the environment. We found significant differences in ERPs and higher theta-band power for objects in incongruent contexts than objects in congruent contexts. This demonstrates that real-world contexts impact how objects are processed, and that mobile brain imaging and augmented reality are effective tools to study cognition in the wild.</p>\",\"PeriodicalId\":73341,\"journal\":{\"name\":\"Imaging neuroscience (Cambridge, Mass.)\",\"volume\":\"3 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617707/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Imaging neuroscience (Cambridge, Mass.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1162/imag_a_00568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging neuroscience (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/imag_a_00568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在预期位置的物体比在不一致环境中的物体识别得更快更准确。这种一致性效应有一个神经成分,在不一致的环境中对物体的活动增加。越来越多的研究表明,现实环境和任务中的神经过程与实验室中的神经过程存在差异。在这里,我们的目标是突破传统认知神经科学的界限,通过跟踪现实世界环境中物体的一致性效应,在实验室之外。我们研究了在记录移动脑电图时,当物体被放置在真实环境中时,使用增强现实技术如何调节神经活动。参与者走近、观看并评价他们发现的物体与环境的一致程度。我们发现,与处于一致情境的客体相比,处于不一致情境中的客体在erp和更高的θ波段功率方面存在显著差异。这表明,现实世界的环境影响了物体的处理方式,移动脑成像和增强现实是研究野外认知的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contextual expectations in the real-world modulate low-frequency neural oscillations.

Objects in expected locations are recognised faster and more accurately than objects in incongruent environments. This congruency effect has a neural component, with increased activity for objects in incongruent environments. Studies have increasingly shown differences between neural processes in realistic environments and tasks, and neural processes in the laboratory. Here, we aimed to push the boundaries of traditional cognitive neuroscience by tracking the congruency effect for objects in real-world environments, outside of the laboratory. We investigated how neural activity is modulated when objects are placed in real environments using augmented reality while recording mobile EEG. Participants approached, viewed, and rated how congruent they found the objects with the environment. We found significant differences in ERPs and higher theta-band power for objects in incongruent contexts than objects in congruent contexts. This demonstrates that real-world contexts impact how objects are processed, and that mobile brain imaging and augmented reality are effective tools to study cognition in the wild.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信