基于TiO2-x的电催化和光电催化诱导I-/IO3 -回收在绿色连续臭氧去除中的应用

Chem & Bio Engineering Pub Date : 2025-03-17 eCollection Date: 2025-05-22 DOI:10.1021/cbe.4c00187
Jiahong Liao, Wenyi Wang, Weicheng Tong, Lixia Qiu, Hao Cheng, Xinben Zhao, Yi He, Chunlin Yu, Xingwang Zhang
{"title":"基于TiO2-x的电催化和光电催化诱导I-/IO3 -回收在绿色连续臭氧去除中的应用","authors":"Jiahong Liao, Wenyi Wang, Weicheng Tong, Lixia Qiu, Hao Cheng, Xinben Zhao, Yi He, Chunlin Yu, Xingwang Zhang","doi":"10.1021/cbe.4c00187","DOIUrl":null,"url":null,"abstract":"<p><p>Solution absorption is a straightforward and efficient method for ozone treatment, but waste from inactive absorption solutions poses a risk of secondary pollution and raises the operating cost. Therefore, developing a sustainable recycling process for the absorption solution is essential for green ozone removal. In this study, we constructed a novel I<sup>-</sup>/IO<sub>3</sub> <sup>-</sup> cycling system induced by electrocatalysis and photoelectrocatalysis to facilitate the reduction of KIO<sub>3</sub> in KI/KOH ozone absorption solution, thereby enabling absorption solution recycling. The stable operation of this system relies on high-performance cathode materials. By adjusting the concentration of oxygen vacancies on TiO<sub>2</sub>, we reduced the energy barrier for IO<sub>3</sub> <sup>-</sup> reduction, optimized IO<sub>3</sub> <sup>-</sup> adsorption on the electrode surface, and improved the band gap structure of the electrode material, resulting in a TiO<sub>2-<i>x</i></sub> cathode with good IO<sub>3</sub> <sup>-</sup> reduction reaction (IO<sub>3</sub>RR) performance. Notably, this method achieves an ozone removal cost of $3.72 per kilogram, only one-third of the cost associated with conventional catalytic ozone decomposition. This approach provides a promising new direction for green and efficient ozone removal.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 5","pages":"322-331"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104842/pdf/","citationCount":"0","resultStr":"{\"title\":\"Applying TiO<sub>2-<i>x</i></sub> -Based Electrocatalysis and Photoelectrocatalysis Induced I<sup>-</sup>/IO<sub>3</sub> <sup>-</sup> Recycling for Green and Continuous Ozone Removal.\",\"authors\":\"Jiahong Liao, Wenyi Wang, Weicheng Tong, Lixia Qiu, Hao Cheng, Xinben Zhao, Yi He, Chunlin Yu, Xingwang Zhang\",\"doi\":\"10.1021/cbe.4c00187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Solution absorption is a straightforward and efficient method for ozone treatment, but waste from inactive absorption solutions poses a risk of secondary pollution and raises the operating cost. Therefore, developing a sustainable recycling process for the absorption solution is essential for green ozone removal. In this study, we constructed a novel I<sup>-</sup>/IO<sub>3</sub> <sup>-</sup> cycling system induced by electrocatalysis and photoelectrocatalysis to facilitate the reduction of KIO<sub>3</sub> in KI/KOH ozone absorption solution, thereby enabling absorption solution recycling. The stable operation of this system relies on high-performance cathode materials. By adjusting the concentration of oxygen vacancies on TiO<sub>2</sub>, we reduced the energy barrier for IO<sub>3</sub> <sup>-</sup> reduction, optimized IO<sub>3</sub> <sup>-</sup> adsorption on the electrode surface, and improved the band gap structure of the electrode material, resulting in a TiO<sub>2-<i>x</i></sub> cathode with good IO<sub>3</sub> <sup>-</sup> reduction reaction (IO<sub>3</sub>RR) performance. Notably, this method achieves an ozone removal cost of $3.72 per kilogram, only one-third of the cost associated with conventional catalytic ozone decomposition. This approach provides a promising new direction for green and efficient ozone removal.</p>\",\"PeriodicalId\":100230,\"journal\":{\"name\":\"Chem & Bio Engineering\",\"volume\":\"2 5\",\"pages\":\"322-331\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104842/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem & Bio Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/cbe.4c00187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/22 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem & Bio Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/cbe.4c00187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/22 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

溶液吸收是一种简单有效的臭氧处理方法,但不活跃的吸收溶液产生的废物有二次污染的风险,并增加了运营成本。因此,开发一种可持续的吸收溶液回收工艺对于去除绿色臭氧至关重要。在本研究中,我们构建了一种新型的由电催化和光电催化诱导的I-/IO3 -循环体系,以促进KI/KOH臭氧吸收溶液中KIO3的还原,从而使吸收溶液循环利用。该系统的稳定运行依赖于高性能的正极材料。通过调整TiO2上氧空位的浓度,降低了IO3 -还原的能垒,优化了IO3 -在电极表面的吸附,改善了电极材料的带隙结构,得到了具有良好IO3 -还原反应(IO3RR)性能的TiO2-x阴极。值得注意的是,这种方法的臭氧去除成本为每公斤3.72美元,仅为传统催化臭氧分解成本的三分之一。该方法为绿色高效的臭氧去除提供了一个有希望的新方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying TiO2-x -Based Electrocatalysis and Photoelectrocatalysis Induced I-/IO3 - Recycling for Green and Continuous Ozone Removal.

Solution absorption is a straightforward and efficient method for ozone treatment, but waste from inactive absorption solutions poses a risk of secondary pollution and raises the operating cost. Therefore, developing a sustainable recycling process for the absorption solution is essential for green ozone removal. In this study, we constructed a novel I-/IO3 - cycling system induced by electrocatalysis and photoelectrocatalysis to facilitate the reduction of KIO3 in KI/KOH ozone absorption solution, thereby enabling absorption solution recycling. The stable operation of this system relies on high-performance cathode materials. By adjusting the concentration of oxygen vacancies on TiO2, we reduced the energy barrier for IO3 - reduction, optimized IO3 - adsorption on the electrode surface, and improved the band gap structure of the electrode material, resulting in a TiO2-x cathode with good IO3 - reduction reaction (IO3RR) performance. Notably, this method achieves an ozone removal cost of $3.72 per kilogram, only one-third of the cost associated with conventional catalytic ozone decomposition. This approach provides a promising new direction for green and efficient ozone removal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信