Jia-Shuang Wu, De-Wei Mu, Nai-Jie Feng, Dian-Feng Zheng, Zhi-Yuan Sun, Aaqil Khan, Hang Zhou, Yi-Wen Song, Jia-Xin Liu, Jia-Qi Luo
{"title":"综合分析揭示油菜素内酯调节水稻耐盐性的生理和分子机制。","authors":"Jia-Shuang Wu, De-Wei Mu, Nai-Jie Feng, Dian-Feng Zheng, Zhi-Yuan Sun, Aaqil Khan, Hang Zhou, Yi-Wen Song, Jia-Xin Liu, Jia-Qi Luo","doi":"10.3390/plants14101555","DOIUrl":null,"url":null,"abstract":"<p><p>Salt stress poses a significant threat to crop growth. While brassinolide (BR) has been shown to alleviate its adverse effects and modulate plant development, the precise mechanism underlying BR-induced salt tolerance in rice remains unclear. In this study, the Chaoyouqianhao and Huanghuazhan rice varieties were employed to investigate the effects of BR seed soaking on the seedling phenotype, physiology, transcriptome, and metabolome under salt stress. The results demonstrated that BR treatment significantly enhanced rice plant height, root length, biomass, and antioxidant enzyme activities, while reducing leaf membrane damage, promoting ion homeostasis, and improving the photosynthetic capacity and salt tolerance. The transcriptome analysis revealed that BR regulated the expression of 1042 and 826 genes linked to antioxidant activity, ion homeostasis, photosynthesis, and lipid metabolism under salt stress. These included genes involved in Na<sup>+</sup> efflux (<i>OsNCED2</i>, <i>OsHKT2;1</i>, and <i>OsHKT1;1)</i>, photosynthetic electron transport (<i>OsFd5</i> and <i>OsFdC1</i>), photosystem II (<i>OsPsbR1</i>, <i>OsPsbR2</i>, and <i>OsPsbP</i>), and CO<sub>2</sub> fixation. The metabolomic analysis identified 91 and 57 metabolite alterations induced by BR, primarily linked to amino acid, flavonoid, and lipid metabolism, with notable increases in antioxidant metabolites such as lignanoside, isorhamnetin, and L-glutamic acid. The integrated analysis highlighted the pivotal roles of 12-OPDA in α-linolenic acid metabolism and genes related to lipid metabolism, JA metabolism, and JA signal transduction in BR-mediated salt tolerance.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"14 10","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Analyses Reveal the Physiological and Molecular Mechanisms of Brassinolide in Modulating Salt Tolerance in Rice.\",\"authors\":\"Jia-Shuang Wu, De-Wei Mu, Nai-Jie Feng, Dian-Feng Zheng, Zhi-Yuan Sun, Aaqil Khan, Hang Zhou, Yi-Wen Song, Jia-Xin Liu, Jia-Qi Luo\",\"doi\":\"10.3390/plants14101555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Salt stress poses a significant threat to crop growth. While brassinolide (BR) has been shown to alleviate its adverse effects and modulate plant development, the precise mechanism underlying BR-induced salt tolerance in rice remains unclear. In this study, the Chaoyouqianhao and Huanghuazhan rice varieties were employed to investigate the effects of BR seed soaking on the seedling phenotype, physiology, transcriptome, and metabolome under salt stress. The results demonstrated that BR treatment significantly enhanced rice plant height, root length, biomass, and antioxidant enzyme activities, while reducing leaf membrane damage, promoting ion homeostasis, and improving the photosynthetic capacity and salt tolerance. The transcriptome analysis revealed that BR regulated the expression of 1042 and 826 genes linked to antioxidant activity, ion homeostasis, photosynthesis, and lipid metabolism under salt stress. These included genes involved in Na<sup>+</sup> efflux (<i>OsNCED2</i>, <i>OsHKT2;1</i>, and <i>OsHKT1;1)</i>, photosynthetic electron transport (<i>OsFd5</i> and <i>OsFdC1</i>), photosystem II (<i>OsPsbR1</i>, <i>OsPsbR2</i>, and <i>OsPsbP</i>), and CO<sub>2</sub> fixation. The metabolomic analysis identified 91 and 57 metabolite alterations induced by BR, primarily linked to amino acid, flavonoid, and lipid metabolism, with notable increases in antioxidant metabolites such as lignanoside, isorhamnetin, and L-glutamic acid. The integrated analysis highlighted the pivotal roles of 12-OPDA in α-linolenic acid metabolism and genes related to lipid metabolism, JA metabolism, and JA signal transduction in BR-mediated salt tolerance.</p>\",\"PeriodicalId\":56267,\"journal\":{\"name\":\"Plants-Basel\",\"volume\":\"14 10\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plants-Basel\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/plants14101555\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants14101555","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Integrated Analyses Reveal the Physiological and Molecular Mechanisms of Brassinolide in Modulating Salt Tolerance in Rice.
Salt stress poses a significant threat to crop growth. While brassinolide (BR) has been shown to alleviate its adverse effects and modulate plant development, the precise mechanism underlying BR-induced salt tolerance in rice remains unclear. In this study, the Chaoyouqianhao and Huanghuazhan rice varieties were employed to investigate the effects of BR seed soaking on the seedling phenotype, physiology, transcriptome, and metabolome under salt stress. The results demonstrated that BR treatment significantly enhanced rice plant height, root length, biomass, and antioxidant enzyme activities, while reducing leaf membrane damage, promoting ion homeostasis, and improving the photosynthetic capacity and salt tolerance. The transcriptome analysis revealed that BR regulated the expression of 1042 and 826 genes linked to antioxidant activity, ion homeostasis, photosynthesis, and lipid metabolism under salt stress. These included genes involved in Na+ efflux (OsNCED2, OsHKT2;1, and OsHKT1;1), photosynthetic electron transport (OsFd5 and OsFdC1), photosystem II (OsPsbR1, OsPsbR2, and OsPsbP), and CO2 fixation. The metabolomic analysis identified 91 and 57 metabolite alterations induced by BR, primarily linked to amino acid, flavonoid, and lipid metabolism, with notable increases in antioxidant metabolites such as lignanoside, isorhamnetin, and L-glutamic acid. The integrated analysis highlighted the pivotal roles of 12-OPDA in α-linolenic acid metabolism and genes related to lipid metabolism, JA metabolism, and JA signal transduction in BR-mediated salt tolerance.
Plants-BaselAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍:
Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.