Andie E Padilla, Gobinath C, Candice Hovell, Jeremy Mares, Veerle Reumers, Twyman Clements, Jason Rextroat, Paul Gamble, Ben Lumpp, Binata Joddar
{"title":"采用微流控MEA技术对亚眶环境下三维神经元网络进行电生理研究。","authors":"Andie E Padilla, Gobinath C, Candice Hovell, Jeremy Mares, Veerle Reumers, Twyman Clements, Jason Rextroat, Paul Gamble, Ben Lumpp, Binata Joddar","doi":"10.1038/s41526-025-00476-x","DOIUrl":null,"url":null,"abstract":"<p><p>Studying neuronal cells in space reveals how microgravity affects brain function, gene expression, and cellular processes. This study details the preparation and validation of a 3D neuronal electrophysiology (EPHYS) sensing microfluidic biodevice used during a suborbital space flight. Initially, the device's function was tested with rat hippocampal neurons using EPHYS data collected via a microelectrode array (MEA). This system was later applied to human glutamatergic (Glu) neurons for eight days preceding a suborbital flight. A live-dead assay confirmed cell viability, and the system was integrated into a CubeLab to maintain a controlled environment. Two biological samples were flown, along with two control samples, to validate the EPHYS system. Results showed that human Glu-neurons exposed to microgravity exhibited altered expression of vesicular glutamate transporters (VGLUTs) while maintaining neuronal differentiation markers. The findings contribute to understanding neurological disorders, neuro-inflammation, and cognitive impacts of space travel, with broader applications for brain health research on Earth.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"11 1","pages":"20"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117052/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adoption of microfluidic MEA technology for electrophysiology of 3D neuronal networks exposed to suborbital conditions.\",\"authors\":\"Andie E Padilla, Gobinath C, Candice Hovell, Jeremy Mares, Veerle Reumers, Twyman Clements, Jason Rextroat, Paul Gamble, Ben Lumpp, Binata Joddar\",\"doi\":\"10.1038/s41526-025-00476-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Studying neuronal cells in space reveals how microgravity affects brain function, gene expression, and cellular processes. This study details the preparation and validation of a 3D neuronal electrophysiology (EPHYS) sensing microfluidic biodevice used during a suborbital space flight. Initially, the device's function was tested with rat hippocampal neurons using EPHYS data collected via a microelectrode array (MEA). This system was later applied to human glutamatergic (Glu) neurons for eight days preceding a suborbital flight. A live-dead assay confirmed cell viability, and the system was integrated into a CubeLab to maintain a controlled environment. Two biological samples were flown, along with two control samples, to validate the EPHYS system. Results showed that human Glu-neurons exposed to microgravity exhibited altered expression of vesicular glutamate transporters (VGLUTs) while maintaining neuronal differentiation markers. The findings contribute to understanding neurological disorders, neuro-inflammation, and cognitive impacts of space travel, with broader applications for brain health research on Earth.</p>\",\"PeriodicalId\":54263,\"journal\":{\"name\":\"npj Microgravity\",\"volume\":\"11 1\",\"pages\":\"20\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117052/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Microgravity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41526-025-00476-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-025-00476-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Adoption of microfluidic MEA technology for electrophysiology of 3D neuronal networks exposed to suborbital conditions.
Studying neuronal cells in space reveals how microgravity affects brain function, gene expression, and cellular processes. This study details the preparation and validation of a 3D neuronal electrophysiology (EPHYS) sensing microfluidic biodevice used during a suborbital space flight. Initially, the device's function was tested with rat hippocampal neurons using EPHYS data collected via a microelectrode array (MEA). This system was later applied to human glutamatergic (Glu) neurons for eight days preceding a suborbital flight. A live-dead assay confirmed cell viability, and the system was integrated into a CubeLab to maintain a controlled environment. Two biological samples were flown, along with two control samples, to validate the EPHYS system. Results showed that human Glu-neurons exposed to microgravity exhibited altered expression of vesicular glutamate transporters (VGLUTs) while maintaining neuronal differentiation markers. The findings contribute to understanding neurological disorders, neuro-inflammation, and cognitive impacts of space travel, with broader applications for brain health research on Earth.
npj MicrogravityPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍:
A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.