局部环境下具有性传播和传播的HIV/AIDS模型分析

IF 2.2 4区 数学 Q2 BIOLOGY
Juping Zhang, Xueyan Ma, Zhen Jin
{"title":"局部环境下具有性传播和传播的HIV/AIDS模型分析","authors":"Juping Zhang, Xueyan Ma, Zhen Jin","doi":"10.1007/s00285-025-02226-9","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a multi-patch HIV/AIDS epidemic model with heterosexual transmission is formulated to investigate the impact of travel among patches. It is a system of <math><mrow><mn>6</mn> <msup><mi>n</mi> <mn>2</mn></msup> </mrow> </math> ordinary differential equations describes HIV/AIDS spread in an environment divided into n patches. We derive the basic reproduction number <math><msub><mi>R</mi> <mn>0</mn></msub> </math> . Lower and upper bounds on <math><msub><mi>R</mi> <mn>0</mn></msub> </math> are given. We prove that if <math> <mrow><msub><mi>R</mi> <mn>0</mn></msub> <mo><</mo> <mn>1</mn></mrow> </math> , the disease-free equilibrium is locally asymptotically stable, and if <math> <mrow><msub><mi>R</mi> <mn>0</mn></msub> <mo>></mo> <mn>1</mn></mrow> </math> , there is at least an endemic equilibrium. We apply the model to three patches in which the disease spreads in a patch and dies out in the other two patches when there is no travel between them. We considered three types of connection between three patches: full connection(FC), i.e., <math><mrow><mn>1</mn> <mo>⇔</mo> <mn>2</mn> <mo>⇔</mo> <mn>3</mn> <mo>⇔</mo> <mn>1</mn></mrow> </math> , circular connection(CC), i.e., <math><mrow><mn>1</mn> <mo>↔</mo> <mn>2</mn> <mo>↔</mo> <mn>3</mn> <mo>↔</mo> <mn>1</mn></mrow> </math> and bidirectional connection(BC), i.e., <math><mrow><mn>1</mn> <mo>⇔</mo> <mn>2</mn> <mo>⇔</mo> <mn>3</mn></mrow> </math> . We set different travel and return rates to study the impact of travel on the spread of HIV/AIDS. Numerical simulations confirm the theoretical results and indicate that travel may increase or decrease the spread of HIV/AIDS, i.e. HIV/AIDS may become endemic or die out in three patches when travel occurs, and three types of connection may have different impacts on disease transmission.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"91 1","pages":"2"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of an HIV/AIDS Model with sexual transmission and travel in a patchy environment.\",\"authors\":\"Juping Zhang, Xueyan Ma, Zhen Jin\",\"doi\":\"10.1007/s00285-025-02226-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, a multi-patch HIV/AIDS epidemic model with heterosexual transmission is formulated to investigate the impact of travel among patches. It is a system of <math><mrow><mn>6</mn> <msup><mi>n</mi> <mn>2</mn></msup> </mrow> </math> ordinary differential equations describes HIV/AIDS spread in an environment divided into n patches. We derive the basic reproduction number <math><msub><mi>R</mi> <mn>0</mn></msub> </math> . Lower and upper bounds on <math><msub><mi>R</mi> <mn>0</mn></msub> </math> are given. We prove that if <math> <mrow><msub><mi>R</mi> <mn>0</mn></msub> <mo><</mo> <mn>1</mn></mrow> </math> , the disease-free equilibrium is locally asymptotically stable, and if <math> <mrow><msub><mi>R</mi> <mn>0</mn></msub> <mo>></mo> <mn>1</mn></mrow> </math> , there is at least an endemic equilibrium. We apply the model to three patches in which the disease spreads in a patch and dies out in the other two patches when there is no travel between them. We considered three types of connection between three patches: full connection(FC), i.e., <math><mrow><mn>1</mn> <mo>⇔</mo> <mn>2</mn> <mo>⇔</mo> <mn>3</mn> <mo>⇔</mo> <mn>1</mn></mrow> </math> , circular connection(CC), i.e., <math><mrow><mn>1</mn> <mo>↔</mo> <mn>2</mn> <mo>↔</mo> <mn>3</mn> <mo>↔</mo> <mn>1</mn></mrow> </math> and bidirectional connection(BC), i.e., <math><mrow><mn>1</mn> <mo>⇔</mo> <mn>2</mn> <mo>⇔</mo> <mn>3</mn></mrow> </math> . We set different travel and return rates to study the impact of travel on the spread of HIV/AIDS. Numerical simulations confirm the theoretical results and indicate that travel may increase or decrease the spread of HIV/AIDS, i.e. HIV/AIDS may become endemic or die out in three patches when travel occurs, and three types of connection may have different impacts on disease transmission.</p>\",\"PeriodicalId\":50148,\"journal\":{\"name\":\"Journal of Mathematical Biology\",\"volume\":\"91 1\",\"pages\":\"2\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-025-02226-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-025-02226-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了具有异性传播的多斑块HIV/AIDS流行模型,探讨了斑块间旅行的影响。它是一个由6n2个常微分方程组成的系统,描述了HIV/AIDS在被划分为n个斑块的环境中的传播。我们推导出基本的复制数r0。给出了r0的下界和上界。证明了当r0 0 1时,无病平衡点是局部渐近稳定的;当r0 0 0 1时,至少存在一个地方性平衡点。我们将该模型应用于三个斑块,其中疾病在一个斑块中传播,当它们之间没有旅行时,疾病在另外两个斑块中消失。我们考虑了三个补丁之间的三种连接:全连接(FC),即1↔2↔3↔1;圆连接(CC),即1↔2↔3↔1;双向连接(BC),即1⇔2⇔3。我们设置了不同的旅行和返回率来研究旅行对艾滋病毒/艾滋病传播的影响。数值模拟证实了理论结果,表明旅行可能增加或减少HIV/AIDS的传播,即当旅行发生时,HIV/AIDS可能在三个斑块中流行或消失,并且三种类型的连接对疾病传播的影响可能不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of an HIV/AIDS Model with sexual transmission and travel in a patchy environment.

In this paper, a multi-patch HIV/AIDS epidemic model with heterosexual transmission is formulated to investigate the impact of travel among patches. It is a system of 6 n 2 ordinary differential equations describes HIV/AIDS spread in an environment divided into n patches. We derive the basic reproduction number R 0 . Lower and upper bounds on R 0 are given. We prove that if R 0 < 1 , the disease-free equilibrium is locally asymptotically stable, and if R 0 > 1 , there is at least an endemic equilibrium. We apply the model to three patches in which the disease spreads in a patch and dies out in the other two patches when there is no travel between them. We considered three types of connection between three patches: full connection(FC), i.e., 1 2 3 1 , circular connection(CC), i.e., 1 2 3 1 and bidirectional connection(BC), i.e., 1 2 3 . We set different travel and return rates to study the impact of travel on the spread of HIV/AIDS. Numerical simulations confirm the theoretical results and indicate that travel may increase or decrease the spread of HIV/AIDS, i.e. HIV/AIDS may become endemic or die out in three patches when travel occurs, and three types of connection may have different impacts on disease transmission.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
120
审稿时长
6 months
期刊介绍: The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena. Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信