{"title":"阐明乳腺癌胰岛素抵抗基因的预后和治疗意义:一种机器学习驱动的分析。","authors":"Lengyun Wei, Dashuai Li, Hongjin Chen, Yajing Pu, Qun Wang, Jintao Li, Meng Zhou, Chenfeng Liu, Pengpeng Long","doi":"10.3390/biology14050539","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer (BC) is among the most prevalent malignancies and remains the leading cause of cancer-related mortality in women worldwide. While prior studies have highlighted the associations between insulin resistance (IR) and both tumorigenesis and cancer progression, the prognostic relevance of IR in BC has not been fully elucidated. In this study, we employed a suite of machine learning algorithms and statistical methods to construct a robust prognostic model for BC based on insulin resistance-related genes (IRGs). The model's prognostic value was subsequently validated in four independent validate cohorts, including METABRIC and three GSE datasets. The resulting IR signature, comprising seven hub IRGs (LIFR, EZR, TBC1D4, NSF, RPL5, SAA1, and PGK1), demonstrated high predictive power for overall survival (OS) across public datasets. Notably, a lower insulin resistance risk score (IRRS) was significantly associated with more favorable clinical outcomes, including enhanced responses to neoadjuvant therapy. Based on single-cell RNA sequencing data, we found that the hub genes were more enriched in T cells, B cells, and epithelial cells. Furthermore, we used machine learning methods to perform feature selection and reduction, which generated a clinically applicable scoring system consisting of the seven hub genes for predicting clinical outcomes in BC patients. This novel IR-based prognostic signature offers a valuable tool for stratifying BC patients by risk and tailoring personalized therapeutic strategies, thus enhancing precision oncology in breast cancer care.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 5","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109394/pdf/","citationCount":"0","resultStr":"{\"title\":\"Elucidating the Prognostic and Therapeutic Implications of Insulin Resistance Genes in Breast Cancer: A Machine Learning-Powered Analysis.\",\"authors\":\"Lengyun Wei, Dashuai Li, Hongjin Chen, Yajing Pu, Qun Wang, Jintao Li, Meng Zhou, Chenfeng Liu, Pengpeng Long\",\"doi\":\"10.3390/biology14050539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer (BC) is among the most prevalent malignancies and remains the leading cause of cancer-related mortality in women worldwide. While prior studies have highlighted the associations between insulin resistance (IR) and both tumorigenesis and cancer progression, the prognostic relevance of IR in BC has not been fully elucidated. In this study, we employed a suite of machine learning algorithms and statistical methods to construct a robust prognostic model for BC based on insulin resistance-related genes (IRGs). The model's prognostic value was subsequently validated in four independent validate cohorts, including METABRIC and three GSE datasets. The resulting IR signature, comprising seven hub IRGs (LIFR, EZR, TBC1D4, NSF, RPL5, SAA1, and PGK1), demonstrated high predictive power for overall survival (OS) across public datasets. Notably, a lower insulin resistance risk score (IRRS) was significantly associated with more favorable clinical outcomes, including enhanced responses to neoadjuvant therapy. Based on single-cell RNA sequencing data, we found that the hub genes were more enriched in T cells, B cells, and epithelial cells. Furthermore, we used machine learning methods to perform feature selection and reduction, which generated a clinically applicable scoring system consisting of the seven hub genes for predicting clinical outcomes in BC patients. This novel IR-based prognostic signature offers a valuable tool for stratifying BC patients by risk and tailoring personalized therapeutic strategies, thus enhancing precision oncology in breast cancer care.</p>\",\"PeriodicalId\":48624,\"journal\":{\"name\":\"Biology-Basel\",\"volume\":\"14 5\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109394/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology-Basel\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biology14050539\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14050539","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Elucidating the Prognostic and Therapeutic Implications of Insulin Resistance Genes in Breast Cancer: A Machine Learning-Powered Analysis.
Breast cancer (BC) is among the most prevalent malignancies and remains the leading cause of cancer-related mortality in women worldwide. While prior studies have highlighted the associations between insulin resistance (IR) and both tumorigenesis and cancer progression, the prognostic relevance of IR in BC has not been fully elucidated. In this study, we employed a suite of machine learning algorithms and statistical methods to construct a robust prognostic model for BC based on insulin resistance-related genes (IRGs). The model's prognostic value was subsequently validated in four independent validate cohorts, including METABRIC and three GSE datasets. The resulting IR signature, comprising seven hub IRGs (LIFR, EZR, TBC1D4, NSF, RPL5, SAA1, and PGK1), demonstrated high predictive power for overall survival (OS) across public datasets. Notably, a lower insulin resistance risk score (IRRS) was significantly associated with more favorable clinical outcomes, including enhanced responses to neoadjuvant therapy. Based on single-cell RNA sequencing data, we found that the hub genes were more enriched in T cells, B cells, and epithelial cells. Furthermore, we used machine learning methods to perform feature selection and reduction, which generated a clinically applicable scoring system consisting of the seven hub genes for predicting clinical outcomes in BC patients. This novel IR-based prognostic signature offers a valuable tool for stratifying BC patients by risk and tailoring personalized therapeutic strategies, thus enhancing precision oncology in breast cancer care.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.