诱导多能干细胞的构建及其对黑骨羊早期胚胎发育的影响。

IF 3.6 3区 生物学 Q1 BIOLOGY
Daqing Wang, Yiyi Liu, Lu Li, Xin Li, Xin Cheng, Zhihui Guo, Guifang Cao, Yong Zhang
{"title":"诱导多能干细胞的构建及其对黑骨羊早期胚胎发育的影响。","authors":"Daqing Wang, Yiyi Liu, Lu Li, Xin Li, Xin Cheng, Zhihui Guo, Guifang Cao, Yong Zhang","doi":"10.3390/biology14050484","DOIUrl":null,"url":null,"abstract":"<p><p>The piggyBac+TET-on transposon induction system has a high efficiency in integrating exogenous genes in multiple cell types, can precisely integrate to reduce genomic damage, has a flexible gene expression regulation, and a strong genetic stability. When used in conjunction with somatic cell nuclear transfer experiments, it can precisely and effectively reveal the intrinsic mechanisms of early biological development. This study successfully reprogrammed black-boned sheep fibroblasts (SFs) into induced pluripotent stem cells (iPSCs) using the piggyBac+TET-on transposon system and investigated their impact on early embryonic development. Seven exogenous reprogramming factors (bovine OCT4, SOX2, KLF4, cMyc, porcine NANOG, Lin-28, and SV40 Large T) were delivered into SFs, successfully inducing iPSCs. A growth performance analysis revealed that iPSC clones exhibited a raised or flat morphology with clear edges, positive alkaline phosphatase staining, and normal karyotypes. The transcriptome analysis indicated a significant enrichment of iPSCs in oxidative phosphorylation and cell proliferation pathways, with an up-regulated expression of the ATP5B, SDHB, Bcl-2, CDK1, and Cyclin D1 genes and a down-regulated expression of BAX (<i>p</i> < 0.05). Somatic cell nuclear transfer experiments demonstrated that the cleavage rate (85% ± 2.12) and blastocyst rate (52% ± 2.11) of the iPSCs were significantly higher than those of the SFs (<i>p</i> < 0.05). The detection of trilineage marker genes confirmed that the expression levels of endoderm (DCN, NANOS3, FOXA2, FOXD3, SOX17), mesoderm (KDR, CD34, NFH), and ectoderm (NEUROD) markers in iPSCs were significantly higher than in SFs (<i>p</i> < 0.01). The findings demonstrate that black-boned sheep iPSCs possess pluripotency and the potential to differentiate into all three germ layers, revealing the mechanisms by which reprogrammed iPSCs influence early embryonic development and providing a critical foundation for research on sheep pluripotent stem cells.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 5","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109116/pdf/","citationCount":"0","resultStr":"{\"title\":\"Construction and Influence of Induced Pluripotent Stem Cells on Early Embryo Development in Black Bone Sheep.\",\"authors\":\"Daqing Wang, Yiyi Liu, Lu Li, Xin Li, Xin Cheng, Zhihui Guo, Guifang Cao, Yong Zhang\",\"doi\":\"10.3390/biology14050484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The piggyBac+TET-on transposon induction system has a high efficiency in integrating exogenous genes in multiple cell types, can precisely integrate to reduce genomic damage, has a flexible gene expression regulation, and a strong genetic stability. When used in conjunction with somatic cell nuclear transfer experiments, it can precisely and effectively reveal the intrinsic mechanisms of early biological development. This study successfully reprogrammed black-boned sheep fibroblasts (SFs) into induced pluripotent stem cells (iPSCs) using the piggyBac+TET-on transposon system and investigated their impact on early embryonic development. Seven exogenous reprogramming factors (bovine OCT4, SOX2, KLF4, cMyc, porcine NANOG, Lin-28, and SV40 Large T) were delivered into SFs, successfully inducing iPSCs. A growth performance analysis revealed that iPSC clones exhibited a raised or flat morphology with clear edges, positive alkaline phosphatase staining, and normal karyotypes. The transcriptome analysis indicated a significant enrichment of iPSCs in oxidative phosphorylation and cell proliferation pathways, with an up-regulated expression of the ATP5B, SDHB, Bcl-2, CDK1, and Cyclin D1 genes and a down-regulated expression of BAX (<i>p</i> < 0.05). Somatic cell nuclear transfer experiments demonstrated that the cleavage rate (85% ± 2.12) and blastocyst rate (52% ± 2.11) of the iPSCs were significantly higher than those of the SFs (<i>p</i> < 0.05). The detection of trilineage marker genes confirmed that the expression levels of endoderm (DCN, NANOS3, FOXA2, FOXD3, SOX17), mesoderm (KDR, CD34, NFH), and ectoderm (NEUROD) markers in iPSCs were significantly higher than in SFs (<i>p</i> < 0.01). The findings demonstrate that black-boned sheep iPSCs possess pluripotency and the potential to differentiate into all three germ layers, revealing the mechanisms by which reprogrammed iPSCs influence early embryonic development and providing a critical foundation for research on sheep pluripotent stem cells.</p>\",\"PeriodicalId\":48624,\"journal\":{\"name\":\"Biology-Basel\",\"volume\":\"14 5\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109116/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology-Basel\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biology14050484\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14050484","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

piggyBac+TET-on转座子诱导系统在多种细胞类型中整合外源基因的效率高,可以精确整合以减少基因组损伤,具有灵活的基因表达调控,遗传稳定性强。当与体细胞核移植实验结合使用时,可以准确有效地揭示早期生物发育的内在机制。本研究利用piggyBac+TET-on转座子系统成功地将黑骨羊成纤维细胞(SFs)重编程为诱导多能干细胞(iPSCs),并研究了其对早期胚胎发育的影响。7种外源性重编程因子(牛OCT4、SOX2、KLF4、cMyc、猪NANOG、Lin-28和SV40 Large T)转染到SFs中,成功诱导iPSCs。生长性能分析显示,iPSC克隆形态凸起或扁平,边缘清晰,碱性磷酸酶染色阳性,核型正常。转录组分析显示,iPSCs在氧化磷酸化和细胞增殖通路上显著富集,ATP5B、SDHB、Bcl-2、CDK1和Cyclin D1基因表达上调,BAX基因表达下调(p < 0.05)。体细胞核移植实验表明,iPSCs的卵裂率(85%±2.12)和囊胚率(52%±2.11)显著高于SFs (p < 0.05)。三龄标记基因检测证实,iPSCs中内胚层(DCN、NANOS3、FOXA2、FOXD3、SOX17)、中胚层(KDR、CD34、NFH)和外胚层(NEUROD)标记基因的表达水平显著高于sf (p < 0.01)。研究结果表明,黑骨羊iPSCs具有多能性,并有可能分化为所有三种胚层,揭示了重编程iPSCs影响早期胚胎发育的机制,为绵羊多能干细胞的研究提供了重要基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction and Influence of Induced Pluripotent Stem Cells on Early Embryo Development in Black Bone Sheep.

The piggyBac+TET-on transposon induction system has a high efficiency in integrating exogenous genes in multiple cell types, can precisely integrate to reduce genomic damage, has a flexible gene expression regulation, and a strong genetic stability. When used in conjunction with somatic cell nuclear transfer experiments, it can precisely and effectively reveal the intrinsic mechanisms of early biological development. This study successfully reprogrammed black-boned sheep fibroblasts (SFs) into induced pluripotent stem cells (iPSCs) using the piggyBac+TET-on transposon system and investigated their impact on early embryonic development. Seven exogenous reprogramming factors (bovine OCT4, SOX2, KLF4, cMyc, porcine NANOG, Lin-28, and SV40 Large T) were delivered into SFs, successfully inducing iPSCs. A growth performance analysis revealed that iPSC clones exhibited a raised or flat morphology with clear edges, positive alkaline phosphatase staining, and normal karyotypes. The transcriptome analysis indicated a significant enrichment of iPSCs in oxidative phosphorylation and cell proliferation pathways, with an up-regulated expression of the ATP5B, SDHB, Bcl-2, CDK1, and Cyclin D1 genes and a down-regulated expression of BAX (p < 0.05). Somatic cell nuclear transfer experiments demonstrated that the cleavage rate (85% ± 2.12) and blastocyst rate (52% ± 2.11) of the iPSCs were significantly higher than those of the SFs (p < 0.05). The detection of trilineage marker genes confirmed that the expression levels of endoderm (DCN, NANOS3, FOXA2, FOXD3, SOX17), mesoderm (KDR, CD34, NFH), and ectoderm (NEUROD) markers in iPSCs were significantly higher than in SFs (p < 0.01). The findings demonstrate that black-boned sheep iPSCs possess pluripotency and the potential to differentiate into all three germ layers, revealing the mechanisms by which reprogrammed iPSCs influence early embryonic development and providing a critical foundation for research on sheep pluripotent stem cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信