Huan Wang, Yongxiang Hu, Qianqian Ge, Yuanyuan Dang, Yi Yang, Long Xu, Xiaoyu Xia, Peng Zhang, Sheng He, Steven Laureys, Yan Yang, Jianghong He
{"title":"丘脑爆发和强直性放电选择性地指示患者的意识水平和恢复情况。","authors":"Huan Wang, Yongxiang Hu, Qianqian Ge, Yuanyuan Dang, Yi Yang, Long Xu, Xiaoyu Xia, Peng Zhang, Sheng He, Steven Laureys, Yan Yang, Jianghong He","doi":"10.1016/j.xinn.2025.100846","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with disorders of consciousness suffer from severe impairments in arousal and awareness alongside anomalous brain connections and aberrant neuronal activities. The thalamus, a crucial hub in the brain connectome, has been empirically inferred to maintain consciousness and wakefulness. Here, we investigated thalamic spiking, brain connectivity, consciousness states, and recovery outcomes following deep brain stimulation in 29 patients. Our study reveals that thalamic neuronal activity serves as a marker of consciousness state. Patients diagnosed with vegetative state/unresponsive wakefulness syndrome exhibited less-active neurons, with longer and more variable burst discharges, than those in a minimally conscious state. Furthermore, neuronal profiles in the intralaminar thalamus, the direct stimulation site, predicted whether electrostimulation here improved recovery. Stronger tonic firing was correlated with enhanced thalamocortical connectivity and better recovery outcomes in patients. These findings suggest that thalamic spiking signatures, including single-neuron burst discharge and tonic firing, selectively indicate the representation and alteration of consciousness.</p>","PeriodicalId":36121,"journal":{"name":"The Innovation","volume":"6 5","pages":"100846"},"PeriodicalIF":33.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105493/pdf/","citationCount":"0","resultStr":"{\"title\":\"Thalamic burst and tonic firing selectively indicate patients' consciousness level and recovery.\",\"authors\":\"Huan Wang, Yongxiang Hu, Qianqian Ge, Yuanyuan Dang, Yi Yang, Long Xu, Xiaoyu Xia, Peng Zhang, Sheng He, Steven Laureys, Yan Yang, Jianghong He\",\"doi\":\"10.1016/j.xinn.2025.100846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Patients with disorders of consciousness suffer from severe impairments in arousal and awareness alongside anomalous brain connections and aberrant neuronal activities. The thalamus, a crucial hub in the brain connectome, has been empirically inferred to maintain consciousness and wakefulness. Here, we investigated thalamic spiking, brain connectivity, consciousness states, and recovery outcomes following deep brain stimulation in 29 patients. Our study reveals that thalamic neuronal activity serves as a marker of consciousness state. Patients diagnosed with vegetative state/unresponsive wakefulness syndrome exhibited less-active neurons, with longer and more variable burst discharges, than those in a minimally conscious state. Furthermore, neuronal profiles in the intralaminar thalamus, the direct stimulation site, predicted whether electrostimulation here improved recovery. Stronger tonic firing was correlated with enhanced thalamocortical connectivity and better recovery outcomes in patients. These findings suggest that thalamic spiking signatures, including single-neuron burst discharge and tonic firing, selectively indicate the representation and alteration of consciousness.</p>\",\"PeriodicalId\":36121,\"journal\":{\"name\":\"The Innovation\",\"volume\":\"6 5\",\"pages\":\"100846\"},\"PeriodicalIF\":33.2000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105493/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Innovation\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xinn.2025.100846\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/5 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Innovation","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1016/j.xinn.2025.100846","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/5 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Thalamic burst and tonic firing selectively indicate patients' consciousness level and recovery.
Patients with disorders of consciousness suffer from severe impairments in arousal and awareness alongside anomalous brain connections and aberrant neuronal activities. The thalamus, a crucial hub in the brain connectome, has been empirically inferred to maintain consciousness and wakefulness. Here, we investigated thalamic spiking, brain connectivity, consciousness states, and recovery outcomes following deep brain stimulation in 29 patients. Our study reveals that thalamic neuronal activity serves as a marker of consciousness state. Patients diagnosed with vegetative state/unresponsive wakefulness syndrome exhibited less-active neurons, with longer and more variable burst discharges, than those in a minimally conscious state. Furthermore, neuronal profiles in the intralaminar thalamus, the direct stimulation site, predicted whether electrostimulation here improved recovery. Stronger tonic firing was correlated with enhanced thalamocortical connectivity and better recovery outcomes in patients. These findings suggest that thalamic spiking signatures, including single-neuron burst discharge and tonic firing, selectively indicate the representation and alteration of consciousness.
期刊介绍:
The Innovation is an interdisciplinary journal that aims to promote scientific application. It publishes cutting-edge research and high-quality reviews in various scientific disciplines, including physics, chemistry, materials, nanotechnology, biology, translational medicine, geoscience, and engineering. The journal adheres to the peer review and publishing standards of Cell Press journals.
The Innovation is committed to serving scientists and the public. It aims to publish significant advances promptly and provides a transparent exchange platform. The journal also strives to efficiently promote the translation from scientific discovery to technological achievements and rapidly disseminate scientific findings worldwide.
Indexed in the following databases, The Innovation has visibility in Scopus, Directory of Open Access Journals (DOAJ), Web of Science, Emerging Sources Citation Index (ESCI), PubMed Central, Compendex (previously Ei index), INSPEC, and CABI A&I.