{"title":"玻璃闪烁体:未来高能辐射探测的窗口。","authors":"Zexuan Sui, Sen Qian, Luyue Niu, Peng Hu, Zhehao Hua, Xiaoxin Zheng, Xinyuan Sun, Gao Tang, Hua Cai, Dong Yang, Weichang Li, Minghui Zhang, Jifeng Han, Jing Ren","doi":"10.1016/j.xinn.2025.100878","DOIUrl":null,"url":null,"abstract":"<p><p>With the significant progress of high-energy physics, nuclear science, and technology, the demand for high-performance scintillators is growing rapidly. Among solid-state scintillators, glass scintillators would play a vital role in the field of high-energy radiation detections because of their merits including low cost, batch production, and arbitrariness in shape. In this review article, the research and development of glass scintillators is introduced with respect to the following key parameters including: density, light yield, scintillation decay time, and radiation hardness. The scintillation mechanisms, preparation methods particularly for Ce<sup>3+</sup>-activated glasses, standard testing methods, scintillation performance, and applications of glass scintillators are comprehensively reviewed and critically discussed. Finally, the problems existing in the research field are presented and the future development directions of glass scintillators for performance improvement are suggested.</p>","PeriodicalId":36121,"journal":{"name":"The Innovation","volume":"6 5","pages":"100878"},"PeriodicalIF":33.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105494/pdf/","citationCount":"0","resultStr":"{\"title\":\"Glass scintillator: A window to future high-energy radiation detection.\",\"authors\":\"Zexuan Sui, Sen Qian, Luyue Niu, Peng Hu, Zhehao Hua, Xiaoxin Zheng, Xinyuan Sun, Gao Tang, Hua Cai, Dong Yang, Weichang Li, Minghui Zhang, Jifeng Han, Jing Ren\",\"doi\":\"10.1016/j.xinn.2025.100878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the significant progress of high-energy physics, nuclear science, and technology, the demand for high-performance scintillators is growing rapidly. Among solid-state scintillators, glass scintillators would play a vital role in the field of high-energy radiation detections because of their merits including low cost, batch production, and arbitrariness in shape. In this review article, the research and development of glass scintillators is introduced with respect to the following key parameters including: density, light yield, scintillation decay time, and radiation hardness. The scintillation mechanisms, preparation methods particularly for Ce<sup>3+</sup>-activated glasses, standard testing methods, scintillation performance, and applications of glass scintillators are comprehensively reviewed and critically discussed. Finally, the problems existing in the research field are presented and the future development directions of glass scintillators for performance improvement are suggested.</p>\",\"PeriodicalId\":36121,\"journal\":{\"name\":\"The Innovation\",\"volume\":\"6 5\",\"pages\":\"100878\"},\"PeriodicalIF\":33.2000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105494/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Innovation\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xinn.2025.100878\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/5 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Innovation","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1016/j.xinn.2025.100878","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/5 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Glass scintillator: A window to future high-energy radiation detection.
With the significant progress of high-energy physics, nuclear science, and technology, the demand for high-performance scintillators is growing rapidly. Among solid-state scintillators, glass scintillators would play a vital role in the field of high-energy radiation detections because of their merits including low cost, batch production, and arbitrariness in shape. In this review article, the research and development of glass scintillators is introduced with respect to the following key parameters including: density, light yield, scintillation decay time, and radiation hardness. The scintillation mechanisms, preparation methods particularly for Ce3+-activated glasses, standard testing methods, scintillation performance, and applications of glass scintillators are comprehensively reviewed and critically discussed. Finally, the problems existing in the research field are presented and the future development directions of glass scintillators for performance improvement are suggested.
期刊介绍:
The Innovation is an interdisciplinary journal that aims to promote scientific application. It publishes cutting-edge research and high-quality reviews in various scientific disciplines, including physics, chemistry, materials, nanotechnology, biology, translational medicine, geoscience, and engineering. The journal adheres to the peer review and publishing standards of Cell Press journals.
The Innovation is committed to serving scientists and the public. It aims to publish significant advances promptly and provides a transparent exchange platform. The journal also strives to efficiently promote the translation from scientific discovery to technological achievements and rapidly disseminate scientific findings worldwide.
Indexed in the following databases, The Innovation has visibility in Scopus, Directory of Open Access Journals (DOAJ), Web of Science, Emerging Sources Citation Index (ESCI), PubMed Central, Compendex (previously Ei index), INSPEC, and CABI A&I.