Tingting Ye, Rongbin Xu, Wenzhong Huang, Zhengyu Yang, Pei Yu, Wenhua Yu, Yanming Liu, Yao Wu, Bo Wen, Yiwen Zhang, Jaime E Hart, Mark Nieuwenhuijsen, Michael J Abramson, Yuming Guo, Shanshan Li
{"title":"从2000年到2022年,数十亿人暴露在越来越热的环境中,但绿色环境却在减少。","authors":"Tingting Ye, Rongbin Xu, Wenzhong Huang, Zhengyu Yang, Pei Yu, Wenhua Yu, Yanming Liu, Yao Wu, Bo Wen, Yiwen Zhang, Jaime E Hart, Mark Nieuwenhuijsen, Michael J Abramson, Yuming Guo, Shanshan Li","doi":"10.1016/j.xinn.2025.100870","DOIUrl":null,"url":null,"abstract":"<p><p>Rising heat stress due to climate warming poses a significant threat to human health, and greenness offers a nature-based solution to mitigate heat-related health impacts and enhance resilience. Although global greenness has increased, it remains unclear whether these trends align with the population's heat mitigation needs. In this study, we integrated spatially resolved demographic data with satellite-derived greenness metric and reanalysis-based heat stress data to construct a global profile of joint exposure at 1 × 1 km resolution from 2000 to 2022. We found that 69.3% of global populated areas and 41.3% of the global population (∼2.9 billion people) were exposed to increasing heat stress but decreasing greenness (IHDG), representing the most concerning situation for heat mitigation. Urban populations were disproportionately affected, with 50.8% exposed compared to 27.1% in rural areas. Low- and middle-income countries exhibited more pronounced trends of increasing heat stress and bore the greatest burden from IHDG, accounting for 85% of total exposed populations. Moreover, there was a notable demographic shift in IHDG-exposed populations toward older groups, exacerbating the heat mitigation crisis. This study advances the understanding of the joint dynamics of heat stress and greenness and provides a profile of population exposure at a fine grid level. By highlighting the scale of IHDG conditions, our findings emphasize the urgent need to address this environmental challenge and a significant opportunity for improving greenness to mitigate increasing heat globally. The spatially detailed assessment maps offer essential data for informed decision-making.</p>","PeriodicalId":36121,"journal":{"name":"The Innovation","volume":"6 5","pages":"100870"},"PeriodicalIF":33.2000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105507/pdf/","citationCount":"0","resultStr":"{\"title\":\"Billions of people exposed to increasing heat but decreasing greenness from 2000 to 2022.\",\"authors\":\"Tingting Ye, Rongbin Xu, Wenzhong Huang, Zhengyu Yang, Pei Yu, Wenhua Yu, Yanming Liu, Yao Wu, Bo Wen, Yiwen Zhang, Jaime E Hart, Mark Nieuwenhuijsen, Michael J Abramson, Yuming Guo, Shanshan Li\",\"doi\":\"10.1016/j.xinn.2025.100870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rising heat stress due to climate warming poses a significant threat to human health, and greenness offers a nature-based solution to mitigate heat-related health impacts and enhance resilience. Although global greenness has increased, it remains unclear whether these trends align with the population's heat mitigation needs. In this study, we integrated spatially resolved demographic data with satellite-derived greenness metric and reanalysis-based heat stress data to construct a global profile of joint exposure at 1 × 1 km resolution from 2000 to 2022. We found that 69.3% of global populated areas and 41.3% of the global population (∼2.9 billion people) were exposed to increasing heat stress but decreasing greenness (IHDG), representing the most concerning situation for heat mitigation. Urban populations were disproportionately affected, with 50.8% exposed compared to 27.1% in rural areas. Low- and middle-income countries exhibited more pronounced trends of increasing heat stress and bore the greatest burden from IHDG, accounting for 85% of total exposed populations. Moreover, there was a notable demographic shift in IHDG-exposed populations toward older groups, exacerbating the heat mitigation crisis. This study advances the understanding of the joint dynamics of heat stress and greenness and provides a profile of population exposure at a fine grid level. By highlighting the scale of IHDG conditions, our findings emphasize the urgent need to address this environmental challenge and a significant opportunity for improving greenness to mitigate increasing heat globally. The spatially detailed assessment maps offer essential data for informed decision-making.</p>\",\"PeriodicalId\":36121,\"journal\":{\"name\":\"The Innovation\",\"volume\":\"6 5\",\"pages\":\"100870\"},\"PeriodicalIF\":33.2000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105507/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Innovation\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xinn.2025.100870\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/5 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Innovation","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1016/j.xinn.2025.100870","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/5 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Billions of people exposed to increasing heat but decreasing greenness from 2000 to 2022.
Rising heat stress due to climate warming poses a significant threat to human health, and greenness offers a nature-based solution to mitigate heat-related health impacts and enhance resilience. Although global greenness has increased, it remains unclear whether these trends align with the population's heat mitigation needs. In this study, we integrated spatially resolved demographic data with satellite-derived greenness metric and reanalysis-based heat stress data to construct a global profile of joint exposure at 1 × 1 km resolution from 2000 to 2022. We found that 69.3% of global populated areas and 41.3% of the global population (∼2.9 billion people) were exposed to increasing heat stress but decreasing greenness (IHDG), representing the most concerning situation for heat mitigation. Urban populations were disproportionately affected, with 50.8% exposed compared to 27.1% in rural areas. Low- and middle-income countries exhibited more pronounced trends of increasing heat stress and bore the greatest burden from IHDG, accounting for 85% of total exposed populations. Moreover, there was a notable demographic shift in IHDG-exposed populations toward older groups, exacerbating the heat mitigation crisis. This study advances the understanding of the joint dynamics of heat stress and greenness and provides a profile of population exposure at a fine grid level. By highlighting the scale of IHDG conditions, our findings emphasize the urgent need to address this environmental challenge and a significant opportunity for improving greenness to mitigate increasing heat globally. The spatially detailed assessment maps offer essential data for informed decision-making.
期刊介绍:
The Innovation is an interdisciplinary journal that aims to promote scientific application. It publishes cutting-edge research and high-quality reviews in various scientific disciplines, including physics, chemistry, materials, nanotechnology, biology, translational medicine, geoscience, and engineering. The journal adheres to the peer review and publishing standards of Cell Press journals.
The Innovation is committed to serving scientists and the public. It aims to publish significant advances promptly and provides a transparent exchange platform. The journal also strives to efficiently promote the translation from scientific discovery to technological achievements and rapidly disseminate scientific findings worldwide.
Indexed in the following databases, The Innovation has visibility in Scopus, Directory of Open Access Journals (DOAJ), Web of Science, Emerging Sources Citation Index (ESCI), PubMed Central, Compendex (previously Ei index), INSPEC, and CABI A&I.