Muhammad Zubair Afzal, Sarmad Ali Khan, Muhammad Umar Farooq, Atif Javaid, Saqib Anwar, Adeolu A Adediran
{"title":"碎屑机设计对HFRP/Al复合材料钻孔刀具寿命和孔完整性的评价。","authors":"Muhammad Zubair Afzal, Sarmad Ali Khan, Muhammad Umar Farooq, Atif Javaid, Saqib Anwar, Adeolu A Adediran","doi":"10.1038/s41598-025-03793-z","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, drilling of a newly developed lightweight fire-retardant carbon/glass-fiber-reinforced polymer epoxy sandwich that includes an aluminum honeycomb core with modified epoxy (HFRP/Al sandwich composite) is investigated. A new high-performance insert combination comprising central-stepped and peripheral-wiper inserts is evaluated. The geometry of the central insert is kept constant while two variations in chip breaker (C<sub>B</sub>) designs are introduced on wiper inserts differentiated mainly based on C<sub>B</sub> width and C<sub>B</sub> depth. Variation one abbreviated as LM geometry has a C<sub>B</sub> depth of 65 μm and a C<sub>B</sub> width of 1000 μm while the second variation terms as GT geometry has a C<sub>B</sub> depth of 20 μm and a C<sub>B</sub> width of 720 μm. This study is conducted in two phases at a constant speed (CS) of 50 m/min in a dry-cutting environment. Phase I involved four tests, in each test ten holes are drilled with LM and GT geometries at two different feed rates (0.08 and 0.16 mm/rev). Based on reduced diametric error, and delamination, tests with a feed rate (FR) of 0.08 mm/rev are selected for Phase-II analysis, which involves the evaluation of tool life testing. The results in terms of tool life, diametric error, and delamination factors are reported. Notably, the GT geometry of the wiper inserts outperformed the LM geometry in terms of 33% higher tool life compared to its LM counterpart. In addition, the diametric error and delamination factor are substantially lower with the former geometry in comparison to the latter one. The better performance of GT geometry is attributed to its better chip flow and robust design.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"18521"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116915/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of chip breaker designs on tool life and hole integrity in drilling of HFRP/Al composite.\",\"authors\":\"Muhammad Zubair Afzal, Sarmad Ali Khan, Muhammad Umar Farooq, Atif Javaid, Saqib Anwar, Adeolu A Adediran\",\"doi\":\"10.1038/s41598-025-03793-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, drilling of a newly developed lightweight fire-retardant carbon/glass-fiber-reinforced polymer epoxy sandwich that includes an aluminum honeycomb core with modified epoxy (HFRP/Al sandwich composite) is investigated. A new high-performance insert combination comprising central-stepped and peripheral-wiper inserts is evaluated. The geometry of the central insert is kept constant while two variations in chip breaker (C<sub>B</sub>) designs are introduced on wiper inserts differentiated mainly based on C<sub>B</sub> width and C<sub>B</sub> depth. Variation one abbreviated as LM geometry has a C<sub>B</sub> depth of 65 μm and a C<sub>B</sub> width of 1000 μm while the second variation terms as GT geometry has a C<sub>B</sub> depth of 20 μm and a C<sub>B</sub> width of 720 μm. This study is conducted in two phases at a constant speed (CS) of 50 m/min in a dry-cutting environment. Phase I involved four tests, in each test ten holes are drilled with LM and GT geometries at two different feed rates (0.08 and 0.16 mm/rev). Based on reduced diametric error, and delamination, tests with a feed rate (FR) of 0.08 mm/rev are selected for Phase-II analysis, which involves the evaluation of tool life testing. The results in terms of tool life, diametric error, and delamination factors are reported. Notably, the GT geometry of the wiper inserts outperformed the LM geometry in terms of 33% higher tool life compared to its LM counterpart. In addition, the diametric error and delamination factor are substantially lower with the former geometry in comparison to the latter one. The better performance of GT geometry is attributed to its better chip flow and robust design.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"18521\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116915/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-03793-z\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-03793-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Evaluation of chip breaker designs on tool life and hole integrity in drilling of HFRP/Al composite.
In this study, drilling of a newly developed lightweight fire-retardant carbon/glass-fiber-reinforced polymer epoxy sandwich that includes an aluminum honeycomb core with modified epoxy (HFRP/Al sandwich composite) is investigated. A new high-performance insert combination comprising central-stepped and peripheral-wiper inserts is evaluated. The geometry of the central insert is kept constant while two variations in chip breaker (CB) designs are introduced on wiper inserts differentiated mainly based on CB width and CB depth. Variation one abbreviated as LM geometry has a CB depth of 65 μm and a CB width of 1000 μm while the second variation terms as GT geometry has a CB depth of 20 μm and a CB width of 720 μm. This study is conducted in two phases at a constant speed (CS) of 50 m/min in a dry-cutting environment. Phase I involved four tests, in each test ten holes are drilled with LM and GT geometries at two different feed rates (0.08 and 0.16 mm/rev). Based on reduced diametric error, and delamination, tests with a feed rate (FR) of 0.08 mm/rev are selected for Phase-II analysis, which involves the evaluation of tool life testing. The results in terms of tool life, diametric error, and delamination factors are reported. Notably, the GT geometry of the wiper inserts outperformed the LM geometry in terms of 33% higher tool life compared to its LM counterpart. In addition, the diametric error and delamination factor are substantially lower with the former geometry in comparison to the latter one. The better performance of GT geometry is attributed to its better chip flow and robust design.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.