训练经典力场和机器学习力场的可逆分子模拟。

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Joe G Greener
{"title":"训练经典力场和机器学习力场的可逆分子模拟。","authors":"Joe G Greener","doi":"10.1073/pnas.2426058122","DOIUrl":null,"url":null,"abstract":"<p><p>The next generation of force fields for molecular dynamics will be developed using a wealth of data. Training systematically with experimental data remains a challenge, however, especially for machine-learning potentials. Differentiable molecular simulation calculates gradients of observables with respect to parameters through molecular dynamics trajectories. Here, we improve this approach by explicitly calculating gradients using a reverse-time simulation with effectively constant memory cost and a computation count similar to the forward simulation. The method is applied to learn all-atom water and gas diffusion models with different functional forms and to train a machine-learning potential for diamond from scratch. Comparison to ensemble reweighting indicates that reversible simulation can provide more accurate gradients and train to match time-dependent observables.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 22","pages":"e2426058122"},"PeriodicalIF":9.4000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reversible molecular simulation for training classical and machine-learning force fields.\",\"authors\":\"Joe G Greener\",\"doi\":\"10.1073/pnas.2426058122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The next generation of force fields for molecular dynamics will be developed using a wealth of data. Training systematically with experimental data remains a challenge, however, especially for machine-learning potentials. Differentiable molecular simulation calculates gradients of observables with respect to parameters through molecular dynamics trajectories. Here, we improve this approach by explicitly calculating gradients using a reverse-time simulation with effectively constant memory cost and a computation count similar to the forward simulation. The method is applied to learn all-atom water and gas diffusion models with different functional forms and to train a machine-learning potential for diamond from scratch. Comparison to ensemble reweighting indicates that reversible simulation can provide more accurate gradients and train to match time-dependent observables.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"122 22\",\"pages\":\"e2426058122\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2426058122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2426058122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

分子动力学的下一代力场将利用丰富的数据得到发展。然而,用实验数据进行系统训练仍然是一个挑战,特别是对于机器学习潜力。可微分子模拟通过分子动力学轨迹计算可观测物相对于参数的梯度。在这里,我们通过使用具有有效恒定内存成本和类似于正演模拟的计算计数的反向时间模拟显式计算梯度来改进这种方法。该方法被应用于学习具有不同功能形式的全原子水和气体扩散模型,并从头开始训练钻石的机器学习潜力。与集成重加权的比较表明,可逆模拟可以提供更精确的梯度,并训练与时间相关的观测值的匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reversible molecular simulation for training classical and machine-learning force fields.

The next generation of force fields for molecular dynamics will be developed using a wealth of data. Training systematically with experimental data remains a challenge, however, especially for machine-learning potentials. Differentiable molecular simulation calculates gradients of observables with respect to parameters through molecular dynamics trajectories. Here, we improve this approach by explicitly calculating gradients using a reverse-time simulation with effectively constant memory cost and a computation count similar to the forward simulation. The method is applied to learn all-atom water and gas diffusion models with different functional forms and to train a machine-learning potential for diamond from scratch. Comparison to ensemble reweighting indicates that reversible simulation can provide more accurate gradients and train to match time-dependent observables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信