Abdullah Alghamdi, Mohammed Alissa, Mohammed A Alshehri
{"title":"西尼罗病毒免疫逃避机制研究。","authors":"Abdullah Alghamdi, Mohammed Alissa, Mohammed A Alshehri","doi":"10.1002/rmv.70042","DOIUrl":null,"url":null,"abstract":"<p><p>West Nile virus (WNV), a globally distributed flavivirus, poses a significant public health threat, causing West Nile fever and potentially severe neuroinvasive disease in humans. The absence of specific antiviral treatments and licenced human vaccines underscores the importance of understanding WNV pathogenesis, particularly the mechanisms by which it evades host immune responses. This review comprehensively analyzes the multifaceted immune evasion strategies employed by WNV, encompassing the suppression of interferon (IFN) production and signalling through targeting of STAT proteins, IRF3, and RNA sensors, the modulation of antigen presentation via downregulation of MHC molecules and impairment of proteasome function, and the manipulation of cytokine and chemokine responses to dysregulate inflammation and promote viral persistence. Furthermore, WNV exploits the blood-brain barrier (BBB) to gain access to the central nervous system (CNS), both by disrupting the barrier integrity and utilising \"Trojan horse\" mechanisms. The potential for antibody-dependent enhancement (ADE) further complicates the host-virus interaction. Understanding these immune evasion mechanisms is crucial for deciphering WNV pathogenesis and informing the development of effective vaccines and targeted immunotherapies aimed at preventing and treating WNV-related diseases. Future research should focus on translating this knowledge into tangible clinical benefits for at-risk populations, particularly regarding strategies to induce broadly neutralising antibody responses and robust T-cell immunity while mitigating the risk of ADE.</p>","PeriodicalId":21180,"journal":{"name":"Reviews in Medical Virology","volume":"35 3","pages":"e70042"},"PeriodicalIF":9.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms of Immune Evasion of West Nile Virus.\",\"authors\":\"Abdullah Alghamdi, Mohammed Alissa, Mohammed A Alshehri\",\"doi\":\"10.1002/rmv.70042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>West Nile virus (WNV), a globally distributed flavivirus, poses a significant public health threat, causing West Nile fever and potentially severe neuroinvasive disease in humans. The absence of specific antiviral treatments and licenced human vaccines underscores the importance of understanding WNV pathogenesis, particularly the mechanisms by which it evades host immune responses. This review comprehensively analyzes the multifaceted immune evasion strategies employed by WNV, encompassing the suppression of interferon (IFN) production and signalling through targeting of STAT proteins, IRF3, and RNA sensors, the modulation of antigen presentation via downregulation of MHC molecules and impairment of proteasome function, and the manipulation of cytokine and chemokine responses to dysregulate inflammation and promote viral persistence. Furthermore, WNV exploits the blood-brain barrier (BBB) to gain access to the central nervous system (CNS), both by disrupting the barrier integrity and utilising \\\"Trojan horse\\\" mechanisms. The potential for antibody-dependent enhancement (ADE) further complicates the host-virus interaction. Understanding these immune evasion mechanisms is crucial for deciphering WNV pathogenesis and informing the development of effective vaccines and targeted immunotherapies aimed at preventing and treating WNV-related diseases. Future research should focus on translating this knowledge into tangible clinical benefits for at-risk populations, particularly regarding strategies to induce broadly neutralising antibody responses and robust T-cell immunity while mitigating the risk of ADE.</p>\",\"PeriodicalId\":21180,\"journal\":{\"name\":\"Reviews in Medical Virology\",\"volume\":\"35 3\",\"pages\":\"e70042\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Medical Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/rmv.70042\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Medical Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/rmv.70042","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
West Nile virus (WNV), a globally distributed flavivirus, poses a significant public health threat, causing West Nile fever and potentially severe neuroinvasive disease in humans. The absence of specific antiviral treatments and licenced human vaccines underscores the importance of understanding WNV pathogenesis, particularly the mechanisms by which it evades host immune responses. This review comprehensively analyzes the multifaceted immune evasion strategies employed by WNV, encompassing the suppression of interferon (IFN) production and signalling through targeting of STAT proteins, IRF3, and RNA sensors, the modulation of antigen presentation via downregulation of MHC molecules and impairment of proteasome function, and the manipulation of cytokine and chemokine responses to dysregulate inflammation and promote viral persistence. Furthermore, WNV exploits the blood-brain barrier (BBB) to gain access to the central nervous system (CNS), both by disrupting the barrier integrity and utilising "Trojan horse" mechanisms. The potential for antibody-dependent enhancement (ADE) further complicates the host-virus interaction. Understanding these immune evasion mechanisms is crucial for deciphering WNV pathogenesis and informing the development of effective vaccines and targeted immunotherapies aimed at preventing and treating WNV-related diseases. Future research should focus on translating this knowledge into tangible clinical benefits for at-risk populations, particularly regarding strategies to induce broadly neutralising antibody responses and robust T-cell immunity while mitigating the risk of ADE.
期刊介绍:
Reviews in Medical Virology aims to provide articles reviewing conceptual or technological advances in diverse areas of virology. The journal covers topics such as molecular biology, cell biology, replication, pathogenesis, immunology, immunization, epidemiology, diagnosis, treatment of viruses of medical importance, and COVID-19 research. The journal has an Impact Factor of 6.989 for the year 2020.
The readership of the journal includes clinicians, virologists, medical microbiologists, molecular biologists, infectious disease specialists, and immunologists. Reviews in Medical Virology is indexed and abstracted in databases such as CABI, Abstracts in Anthropology, ProQuest, Embase, MEDLINE/PubMed, ProQuest Central K-494, SCOPUS, and Web of Science et,al.