{"title":"2 .受体激动剂触发的钙离子从功能连接的内质网释放和溶酶体Ca2+储存内皮细胞。","authors":"Cing-Yu Chen, Yu-Jen Chen, Cheng-An Wang, Chen-Hsiu Lin, Jong-Shiuan Yeh, Paul Chan, Lian-Ru Shiao, Yuk-Man Leung","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Endoplasmic reticulum (ER) and lysosomes are physiologically active, physically and functionally connected intracellular Ca2+ stores. In this study we investigated agonist-triggered Ca2+ release from these two stores in mouse microvascular endothelial bEND.3 cells. Addition of nigericin to discharge lysosomal Ca2+ did not affect endoplasmic reticulum Ca2+ release induced by cyclopiazonic acid (CPA) and vice versa, suggesting lysosomes and ER were separate Ca2+ stores whose Ca2+ content was not readily reduced by depletion of the counterpart. ATP triggered Ca2+ release was partially inhibited by Ned-19 (lysosomal two-pore channel inhibitor) or xestospongin C (inositol 1,4,5-trisphosphate receptor-channel inhibitor), suggesting ATP mobilized Ca2+ from both ER and lysosomes. Whilst ATP-triggered Ca2+ release did not affect subsequent CPA- or nigericin-induced Ca2+ discharge, pretreatment with either CPA or nigericin abolished subsequent ATP-triggered Ca2+ release. Thus, the empty state of ER suppressed lysosomal Ca2+ release elicited by ATP, and vice versa, the empty state of lysosome inhibited ATP triggered Ca2+ release from ER. These data suggest cross-talk of the two organelles on the Ca2+ filling state to regulate agonist-stimulated Ca2+ release of each other.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"74 2","pages":"249-254"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12148140/pdf/","citationCount":"0","resultStr":"{\"title\":\"Agonist-Triggered Ca2+ Release From Functionally Connected Endoplasmic Reticulum and Lysosomal Ca2+ Stores in bEND.3 Endothelial Cells.\",\"authors\":\"Cing-Yu Chen, Yu-Jen Chen, Cheng-An Wang, Chen-Hsiu Lin, Jong-Shiuan Yeh, Paul Chan, Lian-Ru Shiao, Yuk-Man Leung\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endoplasmic reticulum (ER) and lysosomes are physiologically active, physically and functionally connected intracellular Ca2+ stores. In this study we investigated agonist-triggered Ca2+ release from these two stores in mouse microvascular endothelial bEND.3 cells. Addition of nigericin to discharge lysosomal Ca2+ did not affect endoplasmic reticulum Ca2+ release induced by cyclopiazonic acid (CPA) and vice versa, suggesting lysosomes and ER were separate Ca2+ stores whose Ca2+ content was not readily reduced by depletion of the counterpart. ATP triggered Ca2+ release was partially inhibited by Ned-19 (lysosomal two-pore channel inhibitor) or xestospongin C (inositol 1,4,5-trisphosphate receptor-channel inhibitor), suggesting ATP mobilized Ca2+ from both ER and lysosomes. Whilst ATP-triggered Ca2+ release did not affect subsequent CPA- or nigericin-induced Ca2+ discharge, pretreatment with either CPA or nigericin abolished subsequent ATP-triggered Ca2+ release. Thus, the empty state of ER suppressed lysosomal Ca2+ release elicited by ATP, and vice versa, the empty state of lysosome inhibited ATP triggered Ca2+ release from ER. These data suggest cross-talk of the two organelles on the Ca2+ filling state to regulate agonist-stimulated Ca2+ release of each other.</p>\",\"PeriodicalId\":20235,\"journal\":{\"name\":\"Physiological research\",\"volume\":\"74 2\",\"pages\":\"249-254\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12148140/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological research","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Agonist-Triggered Ca2+ Release From Functionally Connected Endoplasmic Reticulum and Lysosomal Ca2+ Stores in bEND.3 Endothelial Cells.
Endoplasmic reticulum (ER) and lysosomes are physiologically active, physically and functionally connected intracellular Ca2+ stores. In this study we investigated agonist-triggered Ca2+ release from these two stores in mouse microvascular endothelial bEND.3 cells. Addition of nigericin to discharge lysosomal Ca2+ did not affect endoplasmic reticulum Ca2+ release induced by cyclopiazonic acid (CPA) and vice versa, suggesting lysosomes and ER were separate Ca2+ stores whose Ca2+ content was not readily reduced by depletion of the counterpart. ATP triggered Ca2+ release was partially inhibited by Ned-19 (lysosomal two-pore channel inhibitor) or xestospongin C (inositol 1,4,5-trisphosphate receptor-channel inhibitor), suggesting ATP mobilized Ca2+ from both ER and lysosomes. Whilst ATP-triggered Ca2+ release did not affect subsequent CPA- or nigericin-induced Ca2+ discharge, pretreatment with either CPA or nigericin abolished subsequent ATP-triggered Ca2+ release. Thus, the empty state of ER suppressed lysosomal Ca2+ release elicited by ATP, and vice versa, the empty state of lysosome inhibited ATP triggered Ca2+ release from ER. These data suggest cross-talk of the two organelles on the Ca2+ filling state to regulate agonist-stimulated Ca2+ release of each other.
期刊介绍:
Physiological Research is a peer reviewed Open Access journal that publishes articles on normal and pathological physiology, biochemistry, biophysics, and pharmacology.
Authors can submit original, previously unpublished research articles, review articles, rapid or short communications.
Instructions for Authors - Respect the instructions carefully when submitting your manuscript. Submitted manuscripts or revised manuscripts that do not follow these Instructions will not be included into the peer-review process.
The articles are available in full versions as pdf files beginning with volume 40, 1991.
The journal publishes the online Ahead of Print /Pre-Press version of the articles that are searchable in Medline and can be cited.