Yuan Zhou, Yuyang Zou, Qingguo Xia, Longkai Cao, Minghua Zhang, Tao Shen, Jianke Du
{"title":"纤维缠绕复合材料壳体圆顶结构的仿真分析与优化设计。","authors":"Yuan Zhou, Yuyang Zou, Qingguo Xia, Longkai Cao, Minghua Zhang, Tao Shen, Jianke Du","doi":"10.3390/polym17101421","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon fiber-reinforced composites are widely used in the aerospace industry due to their exceptional mechanical properties. However, the dome region of composite pressure vessels is prone to stress concentrations under internal pressure, often resulting in premature failure and reduced burst strength. This study developed a finite element model of a reinforced dome structure, which showed excellent agreement with hydrostatic test results, with less than 5.9% deviation in strain measurements. To optimize key reinforcement parameters, a high-accuracy surrogate model based on a backpropagation neural network was integrated with a multi-objective genetic algorithm. The results indicate that compared to the unreinforced dome, the optimized structure reduced the maximum fiber-aligned stress in the dome region by 6.8%; moreover, it achieved a 9.3% reduction in overall mass compared to the unoptimized reinforced configuration. These findings contribute to the structural optimization of composite pressure vessel domes.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 10","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115203/pdf/","citationCount":"0","resultStr":"{\"title\":\"Simulation Analysis and Optimization Design of Dome Structure in Filament Wound Composite Shells.\",\"authors\":\"Yuan Zhou, Yuyang Zou, Qingguo Xia, Longkai Cao, Minghua Zhang, Tao Shen, Jianke Du\",\"doi\":\"10.3390/polym17101421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbon fiber-reinforced composites are widely used in the aerospace industry due to their exceptional mechanical properties. However, the dome region of composite pressure vessels is prone to stress concentrations under internal pressure, often resulting in premature failure and reduced burst strength. This study developed a finite element model of a reinforced dome structure, which showed excellent agreement with hydrostatic test results, with less than 5.9% deviation in strain measurements. To optimize key reinforcement parameters, a high-accuracy surrogate model based on a backpropagation neural network was integrated with a multi-objective genetic algorithm. The results indicate that compared to the unreinforced dome, the optimized structure reduced the maximum fiber-aligned stress in the dome region by 6.8%; moreover, it achieved a 9.3% reduction in overall mass compared to the unoptimized reinforced configuration. These findings contribute to the structural optimization of composite pressure vessel domes.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 10\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115203/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17101421\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17101421","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Simulation Analysis and Optimization Design of Dome Structure in Filament Wound Composite Shells.
Carbon fiber-reinforced composites are widely used in the aerospace industry due to their exceptional mechanical properties. However, the dome region of composite pressure vessels is prone to stress concentrations under internal pressure, often resulting in premature failure and reduced burst strength. This study developed a finite element model of a reinforced dome structure, which showed excellent agreement with hydrostatic test results, with less than 5.9% deviation in strain measurements. To optimize key reinforcement parameters, a high-accuracy surrogate model based on a backpropagation neural network was integrated with a multi-objective genetic algorithm. The results indicate that compared to the unreinforced dome, the optimized structure reduced the maximum fiber-aligned stress in the dome region by 6.8%; moreover, it achieved a 9.3% reduction in overall mass compared to the unoptimized reinforced configuration. These findings contribute to the structural optimization of composite pressure vessel domes.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.