树脂组成对数字光加工增材制造氧化锆陶瓷光聚合的影响。

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-05-15 DOI:10.3390/polym17101354
Ning Kuang, Hao Qi, Wenjie Zhao, Junfei Wu
{"title":"树脂组成对数字光加工增材制造氧化锆陶瓷光聚合的影响。","authors":"Ning Kuang, Hao Qi, Wenjie Zhao, Junfei Wu","doi":"10.3390/polym17101354","DOIUrl":null,"url":null,"abstract":"<p><p>Digital light processing (DLP) is widely recognized as one of the most promising additive manufacturing technologies for ceramic fabrication. Nevertheless, during the additive manufacturing of zirconia ceramics, debinding and sintering often lead to structural defects, which severely deteriorate the material properties and hinder their broader application. In this study, we added an oligomer into the photosensitive resin and systematically investigated the effects of oligomer content on the viscosity and curing properties of ceramic suspensions. The results demonstrated that the introduction of oligomers is conducive to enhancing the crosslinking density and reducing defects. Finally, a 45 vol% solid content zirconia ceramic slurry was prepared by adding 20 wt% oligomers to the resin system. After printing, debinding, and sintering, the final zirconia ceramics exhibited a uniform microstructure without delamination or cracks, its bending strength reached 682.4 MPa. This study demonstrates that zirconia ceramics fabricated by photopolymerization with oligomer photosensitive resin exhibit excellent mechanical properties, significantly expanding the potential applications for high-performance zirconia ceramic components with additive manufacturing.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 10","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115134/pdf/","citationCount":"0","resultStr":"{\"title\":\"Influence of Resin Composition on the Photopolymerization of Zirconia Ceramics Fabricated by Digital Light Processing Additive Manufacturing.\",\"authors\":\"Ning Kuang, Hao Qi, Wenjie Zhao, Junfei Wu\",\"doi\":\"10.3390/polym17101354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Digital light processing (DLP) is widely recognized as one of the most promising additive manufacturing technologies for ceramic fabrication. Nevertheless, during the additive manufacturing of zirconia ceramics, debinding and sintering often lead to structural defects, which severely deteriorate the material properties and hinder their broader application. In this study, we added an oligomer into the photosensitive resin and systematically investigated the effects of oligomer content on the viscosity and curing properties of ceramic suspensions. The results demonstrated that the introduction of oligomers is conducive to enhancing the crosslinking density and reducing defects. Finally, a 45 vol% solid content zirconia ceramic slurry was prepared by adding 20 wt% oligomers to the resin system. After printing, debinding, and sintering, the final zirconia ceramics exhibited a uniform microstructure without delamination or cracks, its bending strength reached 682.4 MPa. This study demonstrates that zirconia ceramics fabricated by photopolymerization with oligomer photosensitive resin exhibit excellent mechanical properties, significantly expanding the potential applications for high-performance zirconia ceramic components with additive manufacturing.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 10\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115134/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17101354\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17101354","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

数字光处理(DLP)被广泛认为是最有前途的陶瓷增材制造技术之一。然而,在氧化锆陶瓷增材制造过程中,脱粘和烧结往往会导致结构缺陷,严重影响材料性能,阻碍其广泛应用。在本研究中,我们在光敏树脂中加入了一种低聚物,并系统地研究了低聚物含量对陶瓷悬浮液粘度和固化性能的影响。结果表明,低聚物的引入有利于提高交联密度,减少缺陷。最后,在树脂体系中加入20 wt%的低聚物,制备出45 vol%固含量的氧化锆陶瓷浆料。经印刷、脱脂、烧结,最终得到的氧化锆陶瓷微结构均匀,无分层、无裂纹,抗弯强度达到682.4 MPa。本研究表明,低聚光敏树脂光聚合制备的氧化锆陶瓷具有优异的力学性能,极大地拓展了增材制造高性能氧化锆陶瓷部件的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of Resin Composition on the Photopolymerization of Zirconia Ceramics Fabricated by Digital Light Processing Additive Manufacturing.

Digital light processing (DLP) is widely recognized as one of the most promising additive manufacturing technologies for ceramic fabrication. Nevertheless, during the additive manufacturing of zirconia ceramics, debinding and sintering often lead to structural defects, which severely deteriorate the material properties and hinder their broader application. In this study, we added an oligomer into the photosensitive resin and systematically investigated the effects of oligomer content on the viscosity and curing properties of ceramic suspensions. The results demonstrated that the introduction of oligomers is conducive to enhancing the crosslinking density and reducing defects. Finally, a 45 vol% solid content zirconia ceramic slurry was prepared by adding 20 wt% oligomers to the resin system. After printing, debinding, and sintering, the final zirconia ceramics exhibited a uniform microstructure without delamination or cracks, its bending strength reached 682.4 MPa. This study demonstrates that zirconia ceramics fabricated by photopolymerization with oligomer photosensitive resin exhibit excellent mechanical properties, significantly expanding the potential applications for high-performance zirconia ceramic components with additive manufacturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信