熔融共混法制备聚乳酸/热塑性海藻酸盐生物复合材料的性能及生物降解。

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-05-14 DOI:10.3390/polym17101338
Yodthong Baimark, Kansiri Pakkethati, Prasong Srihanam
{"title":"熔融共混法制备聚乳酸/热塑性海藻酸盐生物复合材料的性能及生物降解。","authors":"Yodthong Baimark, Kansiri Pakkethati, Prasong Srihanam","doi":"10.3390/polym17101338","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, poly(L-lactic acid)/thermoplastic alginate (PLA/TPA) biocomposites were prepared through a melt blending method. The TPA was initially prepared using glycerol as a plasticizer. The effects of TPA content on the interactions between blend components, thermal properties, phase morphology, mechanical properties, hydrophilicity, and biodegradation properties of biocomposites were systematically investigated. Fourier transform infrared (FTIR) spectroscopy analysis corroborated the interaction between the blend components. The addition of TPA enhanced the nucleating effect for PLA, as determined by differential scanning calorimetry (DSC). Scanning electron microscopy (SEM) revealed poor phase compatibility between the PLA and TPA phases. The thermal stability and mechanical properties of the biocomposites decreased with the addition of TPA, as demonstrated by thermogravimetric analysis (TGA) and tensile tests, respectively. The hydrophilicity and soil burial degradation rate of biocomposites increased significantly as the TPA content increased. These results indicated that PLA/TPA biocomposites degraded faster than pure PLA, making them suitable for single-use packaging, but this necessitates careful optimization of TPA content to balance mechanical properties and soil burial degradation rate for practical single-use applications.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 10","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties and Biodegradation of Poly(lactic Acid)/Thermoplastic Alginate Biocomposites Prepared via a Melt Blending Technique.\",\"authors\":\"Yodthong Baimark, Kansiri Pakkethati, Prasong Srihanam\",\"doi\":\"10.3390/polym17101338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, poly(L-lactic acid)/thermoplastic alginate (PLA/TPA) biocomposites were prepared through a melt blending method. The TPA was initially prepared using glycerol as a plasticizer. The effects of TPA content on the interactions between blend components, thermal properties, phase morphology, mechanical properties, hydrophilicity, and biodegradation properties of biocomposites were systematically investigated. Fourier transform infrared (FTIR) spectroscopy analysis corroborated the interaction between the blend components. The addition of TPA enhanced the nucleating effect for PLA, as determined by differential scanning calorimetry (DSC). Scanning electron microscopy (SEM) revealed poor phase compatibility between the PLA and TPA phases. The thermal stability and mechanical properties of the biocomposites decreased with the addition of TPA, as demonstrated by thermogravimetric analysis (TGA) and tensile tests, respectively. The hydrophilicity and soil burial degradation rate of biocomposites increased significantly as the TPA content increased. These results indicated that PLA/TPA biocomposites degraded faster than pure PLA, making them suitable for single-use packaging, but this necessitates careful optimization of TPA content to balance mechanical properties and soil burial degradation rate for practical single-use applications.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 10\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17101338\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17101338","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文采用熔融共混法制备了聚l -乳酸/热塑性海藻酸盐(PLA/TPA)生物复合材料。TPA最初是用甘油作为增塑剂制备的。系统研究了TPA含量对生物复合材料组分间相互作用、热性能、相形态、力学性能、亲水性和生物降解性能的影响。傅里叶红外光谱(FTIR)分析证实了混合组分之间的相互作用。通过差示扫描量热法(DSC)测定,TPA的加入增强了聚乳酸的成核效应。扫描电镜(SEM)显示PLA和TPA相之间的相相容性较差。热重分析(TGA)和拉伸试验表明,TPA的加入降低了生物复合材料的热稳定性和力学性能。随着TPA含量的增加,生物复合材料的亲水性和土壤埋藏降解率显著提高。这些结果表明,PLA/TPA生物复合材料的降解速度比纯PLA快,使其适合一次性包装,但这需要仔细优化TPA含量,以平衡机械性能和土壤埋藏降解率,以实现实际的一次性应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties and Biodegradation of Poly(lactic Acid)/Thermoplastic Alginate Biocomposites Prepared via a Melt Blending Technique.

In this work, poly(L-lactic acid)/thermoplastic alginate (PLA/TPA) biocomposites were prepared through a melt blending method. The TPA was initially prepared using glycerol as a plasticizer. The effects of TPA content on the interactions between blend components, thermal properties, phase morphology, mechanical properties, hydrophilicity, and biodegradation properties of biocomposites were systematically investigated. Fourier transform infrared (FTIR) spectroscopy analysis corroborated the interaction between the blend components. The addition of TPA enhanced the nucleating effect for PLA, as determined by differential scanning calorimetry (DSC). Scanning electron microscopy (SEM) revealed poor phase compatibility between the PLA and TPA phases. The thermal stability and mechanical properties of the biocomposites decreased with the addition of TPA, as demonstrated by thermogravimetric analysis (TGA) and tensile tests, respectively. The hydrophilicity and soil burial degradation rate of biocomposites increased significantly as the TPA content increased. These results indicated that PLA/TPA biocomposites degraded faster than pure PLA, making them suitable for single-use packaging, but this necessitates careful optimization of TPA content to balance mechanical properties and soil burial degradation rate for practical single-use applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信