Ricardo Cisternas, Jaime Orellana, Nataly Silva, Jonathan Correa-Puerta, Andrea Pucci, Ranjita K Bose, Francesco Picchioni, Esteban Araya-Hermosilla, Rodrigo Araya-Hermosilla
{"title":"通过功能化聚酮辅助diel - alder化学生产石墨纳米薄片:减少层厚度和提高剥离效率的证据。","authors":"Ricardo Cisternas, Jaime Orellana, Nataly Silva, Jonathan Correa-Puerta, Andrea Pucci, Ranjita K Bose, Francesco Picchioni, Esteban Araya-Hermosilla, Rodrigo Araya-Hermosilla","doi":"10.3390/polym17101333","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces an efficient and scalable method for the top-down exfoliation of graphite into graphite nanoplatelets (GNPs) using polyketones (PKs) functionalized with Diels-Alder (DA) active groups. Leveraging the reversible covalent interactions facilitated by furan and thiophene moieties in PK, combined with melt-mixing and shear force, this process achieves significant exfoliation while preserving the structural integrity of the resulting material. Thermal and rheological analyses demonstrate enhanced interfacial adhesion and stability within polymer composites attributed to the DA-driven interactions between functionalized PK and graphite. Comparative evaluations demonstrate that furan-functionalized PK exhibits superior exfoliation efficiency, highlighting its potential for producing high-quality exfoliated graphite suitable for advanced nanocomposite applications that require enhanced thermal, mechanical, and electrical properties. This method seamlessly integrates sustainability with industrial scalability, offering significant advancements in developing GNP-based materials.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 10","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production of Graphite Nanoplatelets via Functionalized Polyketone-Assisted Diels-Alder Chemistry: Evidence of Reduced Layer Thickness and Enhanced Exfoliation Efficiency.\",\"authors\":\"Ricardo Cisternas, Jaime Orellana, Nataly Silva, Jonathan Correa-Puerta, Andrea Pucci, Ranjita K Bose, Francesco Picchioni, Esteban Araya-Hermosilla, Rodrigo Araya-Hermosilla\",\"doi\":\"10.3390/polym17101333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study introduces an efficient and scalable method for the top-down exfoliation of graphite into graphite nanoplatelets (GNPs) using polyketones (PKs) functionalized with Diels-Alder (DA) active groups. Leveraging the reversible covalent interactions facilitated by furan and thiophene moieties in PK, combined with melt-mixing and shear force, this process achieves significant exfoliation while preserving the structural integrity of the resulting material. Thermal and rheological analyses demonstrate enhanced interfacial adhesion and stability within polymer composites attributed to the DA-driven interactions between functionalized PK and graphite. Comparative evaluations demonstrate that furan-functionalized PK exhibits superior exfoliation efficiency, highlighting its potential for producing high-quality exfoliated graphite suitable for advanced nanocomposite applications that require enhanced thermal, mechanical, and electrical properties. This method seamlessly integrates sustainability with industrial scalability, offering significant advancements in developing GNP-based materials.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 10\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17101333\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17101333","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Production of Graphite Nanoplatelets via Functionalized Polyketone-Assisted Diels-Alder Chemistry: Evidence of Reduced Layer Thickness and Enhanced Exfoliation Efficiency.
This study introduces an efficient and scalable method for the top-down exfoliation of graphite into graphite nanoplatelets (GNPs) using polyketones (PKs) functionalized with Diels-Alder (DA) active groups. Leveraging the reversible covalent interactions facilitated by furan and thiophene moieties in PK, combined with melt-mixing and shear force, this process achieves significant exfoliation while preserving the structural integrity of the resulting material. Thermal and rheological analyses demonstrate enhanced interfacial adhesion and stability within polymer composites attributed to the DA-driven interactions between functionalized PK and graphite. Comparative evaluations demonstrate that furan-functionalized PK exhibits superior exfoliation efficiency, highlighting its potential for producing high-quality exfoliated graphite suitable for advanced nanocomposite applications that require enhanced thermal, mechanical, and electrical properties. This method seamlessly integrates sustainability with industrial scalability, offering significant advancements in developing GNP-based materials.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.