{"title":"PμSL 3D打印微针的形态设计及精度控制。","authors":"Baoling Jia, Tiandong Xia, Yangtao Xu, Bei Li","doi":"10.3390/polym17101351","DOIUrl":null,"url":null,"abstract":"<p><p>Microneedles (MNs) hold significant potential for applications in transdermal drug delivery and biosensing. However, when traditional 3D printing technology is used for their manufacture, a substantial deviation in output size occurs. The effects of various parameters on the morphology of MNs produced through microscale 3D printing remain unclear. This study investigated the relationship between the design and fabrication of acrylic resin MNs and their output forms via a projection microstereolithography (PµSL) technology system. Modifying the shape parameters and array configurations elucidates the causes of size deviation and proposes a control strategy. This is particularly significant for the prototyping and mold manufacturing of MNs in relevant fields. This study indicates that a printing layer thickness of 10 µm optimally balances efficiency and clinical conversion requirements. Additionally, an exposure intensity of 65 mW/cm<sup>2</sup> achieves both a high fidelity and an appropriate base size. The printing angle significantly influences the morphology and mechanical properties of MNs. The diameter and aspect ratio of solid MNs correlate with their dimensional stability. Clinically, conical or quadrilateral MNs with defined parameters are recommended. A critical spacing (≥40 µm) and an optimal arrangement of the MN arrays were established. The specific exposure intensity and vertical printing angle of the hollow MNs ensure the precision of the micropore diameter and wall thickness. This approach offers theoretical insights and process parameters essential for high-precision, customizable MN engineering design.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 10","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114653/pdf/","citationCount":"0","resultStr":"{\"title\":\"Morphology Design and Precision Control of Microneedles by PμSL 3D Printing.\",\"authors\":\"Baoling Jia, Tiandong Xia, Yangtao Xu, Bei Li\",\"doi\":\"10.3390/polym17101351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microneedles (MNs) hold significant potential for applications in transdermal drug delivery and biosensing. However, when traditional 3D printing technology is used for their manufacture, a substantial deviation in output size occurs. The effects of various parameters on the morphology of MNs produced through microscale 3D printing remain unclear. This study investigated the relationship between the design and fabrication of acrylic resin MNs and their output forms via a projection microstereolithography (PµSL) technology system. Modifying the shape parameters and array configurations elucidates the causes of size deviation and proposes a control strategy. This is particularly significant for the prototyping and mold manufacturing of MNs in relevant fields. This study indicates that a printing layer thickness of 10 µm optimally balances efficiency and clinical conversion requirements. Additionally, an exposure intensity of 65 mW/cm<sup>2</sup> achieves both a high fidelity and an appropriate base size. The printing angle significantly influences the morphology and mechanical properties of MNs. The diameter and aspect ratio of solid MNs correlate with their dimensional stability. Clinically, conical or quadrilateral MNs with defined parameters are recommended. A critical spacing (≥40 µm) and an optimal arrangement of the MN arrays were established. The specific exposure intensity and vertical printing angle of the hollow MNs ensure the precision of the micropore diameter and wall thickness. This approach offers theoretical insights and process parameters essential for high-precision, customizable MN engineering design.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 10\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114653/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17101351\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17101351","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Morphology Design and Precision Control of Microneedles by PμSL 3D Printing.
Microneedles (MNs) hold significant potential for applications in transdermal drug delivery and biosensing. However, when traditional 3D printing technology is used for their manufacture, a substantial deviation in output size occurs. The effects of various parameters on the morphology of MNs produced through microscale 3D printing remain unclear. This study investigated the relationship between the design and fabrication of acrylic resin MNs and their output forms via a projection microstereolithography (PµSL) technology system. Modifying the shape parameters and array configurations elucidates the causes of size deviation and proposes a control strategy. This is particularly significant for the prototyping and mold manufacturing of MNs in relevant fields. This study indicates that a printing layer thickness of 10 µm optimally balances efficiency and clinical conversion requirements. Additionally, an exposure intensity of 65 mW/cm2 achieves both a high fidelity and an appropriate base size. The printing angle significantly influences the morphology and mechanical properties of MNs. The diameter and aspect ratio of solid MNs correlate with their dimensional stability. Clinically, conical or quadrilateral MNs with defined parameters are recommended. A critical spacing (≥40 µm) and an optimal arrangement of the MN arrays were established. The specific exposure intensity and vertical printing angle of the hollow MNs ensure the precision of the micropore diameter and wall thickness. This approach offers theoretical insights and process parameters essential for high-precision, customizable MN engineering design.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.