光电应用剪裁CuO/聚苯胺纳米复合材料:合成、表征和性能分析。

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-05-21 DOI:10.3390/polym17101423
Fedda Alzoubi, Mahmoud Al-Gharram, Tariq AlZoubi, Hasan Al-Khateeb, Mohammed Al-Qadi, Osamah Abu Noqta, Ghaseb Makhadmeh, Omar Mouhtady, Mohannad Al-Hmoud, Jestin Mandumpal
{"title":"光电应用剪裁CuO/聚苯胺纳米复合材料:合成、表征和性能分析。","authors":"Fedda Alzoubi, Mahmoud Al-Gharram, Tariq AlZoubi, Hasan Al-Khateeb, Mohammed Al-Qadi, Osamah Abu Noqta, Ghaseb Makhadmeh, Omar Mouhtady, Mohannad Al-Hmoud, Jestin Mandumpal","doi":"10.3390/polym17101423","DOIUrl":null,"url":null,"abstract":"<p><p>This research focuses on creating CuO/PANI nanocomposite films by electrodepositing copper oxide nanoparticles into a polyaniline matrix on ITO substrates. The CuO nanoparticle content was adjusted between 7% and 21%. These nanocomposites are promising for various applications, such as optoelectronic devices, gas sensors, electromagnetic interference shielding, and electrochromic devices. We utilized UV-Vis spectroscopy to examine the nanocomposites' interaction with light, allowing us to ascertain their refractive indices and absorption coefficients. The Scherrer formula facilitated the determination of the average crystallite size, shedding light on the material's internal structure. Tauc plots indicated a reduction in the energy-band gap from 3.36 eV to 3.12 eV as the concentration of CuO nanoparticles within the PANI matrix increased, accompanied by a rise in electrical conductivity. The incorporation of CuO nanoparticles into the polyaniline matrix appears to enhance the conjugation length of PANI chains, as evidenced by shifts in the quinoid and benzenoid ring vibrations in FTIR spectra. SEM analysis indicates that the nanocomposite films possess a relatively smooth and homogeneous surface. Additionally, FTIR and XRD analyses demonstrate an increasing degree of interaction between CuO nanoparticles and PANI chains with higher CuO concentrations. At lower concentrations, interactions were minimal. In contrast, at higher concentrations, more significant interactions were observed, which facilitated the stretching of polymer chains, improved molecular packing, and facilitated the formation of larger crystalline structures within the PANI matrix. The incorporation of CuO nanoparticles resulted in nanocomposites with electrical conductivities ranging from 1.2 to 17.0 S cm<sup>-1</sup>, which are favorable for optimum performance in optoelectronic devices. These results confirm that the nanocomposite films combine pronounced crystallinity, markedly enhanced electrical conductivity, and tunable band-gap energies, positioning them as versatile candidates for next-generation optoelectronic devices.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 10","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115252/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tailoring CuO/Polyaniline Nanocomposites for Optoelectronic Applications: Synthesis, Characterization, and Performance Analysis.\",\"authors\":\"Fedda Alzoubi, Mahmoud Al-Gharram, Tariq AlZoubi, Hasan Al-Khateeb, Mohammed Al-Qadi, Osamah Abu Noqta, Ghaseb Makhadmeh, Omar Mouhtady, Mohannad Al-Hmoud, Jestin Mandumpal\",\"doi\":\"10.3390/polym17101423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research focuses on creating CuO/PANI nanocomposite films by electrodepositing copper oxide nanoparticles into a polyaniline matrix on ITO substrates. The CuO nanoparticle content was adjusted between 7% and 21%. These nanocomposites are promising for various applications, such as optoelectronic devices, gas sensors, electromagnetic interference shielding, and electrochromic devices. We utilized UV-Vis spectroscopy to examine the nanocomposites' interaction with light, allowing us to ascertain their refractive indices and absorption coefficients. The Scherrer formula facilitated the determination of the average crystallite size, shedding light on the material's internal structure. Tauc plots indicated a reduction in the energy-band gap from 3.36 eV to 3.12 eV as the concentration of CuO nanoparticles within the PANI matrix increased, accompanied by a rise in electrical conductivity. The incorporation of CuO nanoparticles into the polyaniline matrix appears to enhance the conjugation length of PANI chains, as evidenced by shifts in the quinoid and benzenoid ring vibrations in FTIR spectra. SEM analysis indicates that the nanocomposite films possess a relatively smooth and homogeneous surface. Additionally, FTIR and XRD analyses demonstrate an increasing degree of interaction between CuO nanoparticles and PANI chains with higher CuO concentrations. At lower concentrations, interactions were minimal. In contrast, at higher concentrations, more significant interactions were observed, which facilitated the stretching of polymer chains, improved molecular packing, and facilitated the formation of larger crystalline structures within the PANI matrix. The incorporation of CuO nanoparticles resulted in nanocomposites with electrical conductivities ranging from 1.2 to 17.0 S cm<sup>-1</sup>, which are favorable for optimum performance in optoelectronic devices. These results confirm that the nanocomposite films combine pronounced crystallinity, markedly enhanced electrical conductivity, and tunable band-gap energies, positioning them as versatile candidates for next-generation optoelectronic devices.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 10\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115252/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17101423\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17101423","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是通过在ITO衬底上的聚苯胺基体上电沉积氧化铜纳米颗粒来制备CuO/PANI纳米复合薄膜。纳米CuO含量调整在7% ~ 21%之间。这些纳米复合材料在光电子器件、气体传感器、电磁干扰屏蔽和电致变色器件等各种应用中具有广阔的前景。我们利用紫外可见光谱分析了纳米复合材料与光的相互作用,从而确定了它们的折射率和吸收系数。Scherrer公式有助于确定平均晶粒尺寸,揭示材料的内部结构。tac图显示,随着聚苯胺基体中CuO纳米颗粒浓度的增加,能带隙从3.36 eV减小到3.12 eV,同时电导率也有所提高。在聚苯胺基体中加入CuO纳米粒子似乎可以增强聚苯胺链的共轭长度,这可以从FTIR光谱中醌环和苯环振动的变化中得到证明。SEM分析表明,纳米复合膜具有相对光滑均匀的表面。此外,FTIR和XRD分析表明,随着CuO浓度的增加,CuO纳米颗粒与聚苯胺链之间的相互作用程度增加。在较低浓度下,相互作用最小。相反,在更高的浓度下,观察到更显著的相互作用,这促进了聚合物链的拉伸,改善了分子堆积,并促进了PANI基质内更大晶体结构的形成。CuO纳米颗粒的掺入使纳米复合材料的电导率在1.2 ~ 17.0 S cm-1之间,有利于光电器件的最佳性能。这些结果证实,纳米复合薄膜结合了明显的结晶度、显著增强的导电性和可调的带隙能量,使其成为下一代光电器件的通用候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tailoring CuO/Polyaniline Nanocomposites for Optoelectronic Applications: Synthesis, Characterization, and Performance Analysis.

This research focuses on creating CuO/PANI nanocomposite films by electrodepositing copper oxide nanoparticles into a polyaniline matrix on ITO substrates. The CuO nanoparticle content was adjusted between 7% and 21%. These nanocomposites are promising for various applications, such as optoelectronic devices, gas sensors, electromagnetic interference shielding, and electrochromic devices. We utilized UV-Vis spectroscopy to examine the nanocomposites' interaction with light, allowing us to ascertain their refractive indices and absorption coefficients. The Scherrer formula facilitated the determination of the average crystallite size, shedding light on the material's internal structure. Tauc plots indicated a reduction in the energy-band gap from 3.36 eV to 3.12 eV as the concentration of CuO nanoparticles within the PANI matrix increased, accompanied by a rise in electrical conductivity. The incorporation of CuO nanoparticles into the polyaniline matrix appears to enhance the conjugation length of PANI chains, as evidenced by shifts in the quinoid and benzenoid ring vibrations in FTIR spectra. SEM analysis indicates that the nanocomposite films possess a relatively smooth and homogeneous surface. Additionally, FTIR and XRD analyses demonstrate an increasing degree of interaction between CuO nanoparticles and PANI chains with higher CuO concentrations. At lower concentrations, interactions were minimal. In contrast, at higher concentrations, more significant interactions were observed, which facilitated the stretching of polymer chains, improved molecular packing, and facilitated the formation of larger crystalline structures within the PANI matrix. The incorporation of CuO nanoparticles resulted in nanocomposites with electrical conductivities ranging from 1.2 to 17.0 S cm-1, which are favorable for optimum performance in optoelectronic devices. These results confirm that the nanocomposite films combine pronounced crystallinity, markedly enhanced electrical conductivity, and tunable band-gap energies, positioning them as versatile candidates for next-generation optoelectronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信