酸性磷酸壳聚糖的合成及La(III)在酸性水溶液中的络合。

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-05-14 DOI:10.3390/polym17101341
Min Zhou, Zhenglin Liu, Dandan Lu, Jiajun Wang, Zili Chen, Yunren Qiu
{"title":"酸性磷酸壳聚糖的合成及La(III)在酸性水溶液中的络合。","authors":"Min Zhou, Zhenglin Liu, Dandan Lu, Jiajun Wang, Zili Chen, Yunren Qiu","doi":"10.3390/polym17101341","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the similar physicochemical properties of rare earth ions, their separation presents significant challenges. In this study, acidic phosphonic chitosan (aPCS) was prepared by modifying chitosan with phosphite and formaldehyde for improving the water solubility and complexing ability of rare earth ions in acidic aqueous solutions. DFT calculations revealed that its phosphonic groups serve as preferred reaction sites, forming stable bidentate complexes with rare earth cations. The complexation abilities of aPCS and phosphorylated chitosan (PCS) for La(III) were compared at various pHs by complexation-ultrafiltration. The results showed that aPCS achieved a 97% rejection for La(III), while 70% for PCS at pH 5 and P/RE 10. Furthermore, aPCS maintained higher rejection than PCS at pH of 3 to 7. In conclusion, aPCS demonstrates excellent potential for the selective extraction and purification of rare earth ions.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 10","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115187/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Acidic Phosphonic Chitosan and the Complexation of La(III) in Acidic Aqueous Solution.\",\"authors\":\"Min Zhou, Zhenglin Liu, Dandan Lu, Jiajun Wang, Zili Chen, Yunren Qiu\",\"doi\":\"10.3390/polym17101341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to the similar physicochemical properties of rare earth ions, their separation presents significant challenges. In this study, acidic phosphonic chitosan (aPCS) was prepared by modifying chitosan with phosphite and formaldehyde for improving the water solubility and complexing ability of rare earth ions in acidic aqueous solutions. DFT calculations revealed that its phosphonic groups serve as preferred reaction sites, forming stable bidentate complexes with rare earth cations. The complexation abilities of aPCS and phosphorylated chitosan (PCS) for La(III) were compared at various pHs by complexation-ultrafiltration. The results showed that aPCS achieved a 97% rejection for La(III), while 70% for PCS at pH 5 and P/RE 10. Furthermore, aPCS maintained higher rejection than PCS at pH of 3 to 7. In conclusion, aPCS demonstrates excellent potential for the selective extraction and purification of rare earth ions.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 10\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115187/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17101341\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17101341","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于稀土离子具有相似的物理化学性质,它们的分离面临着巨大的挑战。为了提高稀土离子在酸性水溶液中的水溶性和络合能力,采用亚磷酸酯和甲醛对壳聚糖进行改性,制备了酸性磷酸壳聚糖(aPCS)。DFT计算表明,它的膦基团作为首选反应位点,与稀土阳离子形成稳定的双齿配合物。采用络合-超滤法比较了aPCS和磷酸化壳聚糖(PCS)在不同ph值下对La(III)的络合能力。结果表明,在pH 5和P/RE 10条件下,aPCS对La(III)的去除率为97%,对PCS的去除率为70%。在pH为3 ~ 7时,aPCS的截留率高于PCS。综上所述,aPCS在稀土离子的选择性提取和纯化方面具有良好的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of Acidic Phosphonic Chitosan and the Complexation of La(III) in Acidic Aqueous Solution.

Due to the similar physicochemical properties of rare earth ions, their separation presents significant challenges. In this study, acidic phosphonic chitosan (aPCS) was prepared by modifying chitosan with phosphite and formaldehyde for improving the water solubility and complexing ability of rare earth ions in acidic aqueous solutions. DFT calculations revealed that its phosphonic groups serve as preferred reaction sites, forming stable bidentate complexes with rare earth cations. The complexation abilities of aPCS and phosphorylated chitosan (PCS) for La(III) were compared at various pHs by complexation-ultrafiltration. The results showed that aPCS achieved a 97% rejection for La(III), while 70% for PCS at pH 5 and P/RE 10. Furthermore, aPCS maintained higher rejection than PCS at pH of 3 to 7. In conclusion, aPCS demonstrates excellent potential for the selective extraction and purification of rare earth ions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信