Alejandra E Herrera-Alonso, Daniela F Rodríguez-Chávez, Alberto Toxqui-Terán, José F Rubio-Valle, José E Martín-Alfonso, Samuel Longoria-García, Hugo L Gallardo-Blanco, Celia N Sánchez-Domínguez, Margarita Sánchez-Domínguez
{"title":"ph敏感壳聚糖基水凝胶捕获波洛沙姆胶束作为姜黄素装载和递送的双包封响应系统。","authors":"Alejandra E Herrera-Alonso, Daniela F Rodríguez-Chávez, Alberto Toxqui-Terán, José F Rubio-Valle, José E Martín-Alfonso, Samuel Longoria-García, Hugo L Gallardo-Blanco, Celia N Sánchez-Domínguez, Margarita Sánchez-Domínguez","doi":"10.3390/polym17101335","DOIUrl":null,"url":null,"abstract":"<p><p>pH-sensitive hydrogels are important soft biomaterials as they mimic biological organisms by altering their properties in response to small pH changes in biological fluids. In this work, novel chitosan (Cs) hydrogels were developed using an innovative dual curcumin (Cur) encapsulation system. Cur was loaded into poloxamer 407 micelles and incorporated into citric acid (CA) cross-linked Cs hydrogels using a central composite design. The hydrogels were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), rheological tests, and in vitro experiments, such as hemolysis and cytotoxicity assays. FTIR confirmed cross-linking between Cs and CA, while DSC suggested interactions between Cur-loaded micelles and the hydrogel matrix. Rheological analysis revealed gel-like behavior, with G' consistently higher than G, and temperature influenced hydrogel properties. SEM showed a denser network when Cur-loaded micelles were incorporated, slowing Cur release. At physiological pH (7.4), 75% of Cur was released after 7 days, while 84% was released at pH 5.5, showing pH-responsive behavior. Cytotoxicity tests showed over 80% viability of VERO CCL-81 cells (0.2-20 ppm hydrogel). This dual-encapsulation system provides a simple and effective platform for loading lipophilic drugs into pH-responsive hydrogels.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 10","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114727/pdf/","citationCount":"0","resultStr":"{\"title\":\"pH-Sensitive Chitosan-Based Hydrogels Trap Poloxamer Micelles as a Dual-Encapsulating Responsive System for the Loading and Delivery of Curcumin.\",\"authors\":\"Alejandra E Herrera-Alonso, Daniela F Rodríguez-Chávez, Alberto Toxqui-Terán, José F Rubio-Valle, José E Martín-Alfonso, Samuel Longoria-García, Hugo L Gallardo-Blanco, Celia N Sánchez-Domínguez, Margarita Sánchez-Domínguez\",\"doi\":\"10.3390/polym17101335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>pH-sensitive hydrogels are important soft biomaterials as they mimic biological organisms by altering their properties in response to small pH changes in biological fluids. In this work, novel chitosan (Cs) hydrogels were developed using an innovative dual curcumin (Cur) encapsulation system. Cur was loaded into poloxamer 407 micelles and incorporated into citric acid (CA) cross-linked Cs hydrogels using a central composite design. The hydrogels were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), rheological tests, and in vitro experiments, such as hemolysis and cytotoxicity assays. FTIR confirmed cross-linking between Cs and CA, while DSC suggested interactions between Cur-loaded micelles and the hydrogel matrix. Rheological analysis revealed gel-like behavior, with G' consistently higher than G, and temperature influenced hydrogel properties. SEM showed a denser network when Cur-loaded micelles were incorporated, slowing Cur release. At physiological pH (7.4), 75% of Cur was released after 7 days, while 84% was released at pH 5.5, showing pH-responsive behavior. Cytotoxicity tests showed over 80% viability of VERO CCL-81 cells (0.2-20 ppm hydrogel). This dual-encapsulation system provides a simple and effective platform for loading lipophilic drugs into pH-responsive hydrogels.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 10\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114727/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17101335\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17101335","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
pH-Sensitive Chitosan-Based Hydrogels Trap Poloxamer Micelles as a Dual-Encapsulating Responsive System for the Loading and Delivery of Curcumin.
pH-sensitive hydrogels are important soft biomaterials as they mimic biological organisms by altering their properties in response to small pH changes in biological fluids. In this work, novel chitosan (Cs) hydrogels were developed using an innovative dual curcumin (Cur) encapsulation system. Cur was loaded into poloxamer 407 micelles and incorporated into citric acid (CA) cross-linked Cs hydrogels using a central composite design. The hydrogels were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), rheological tests, and in vitro experiments, such as hemolysis and cytotoxicity assays. FTIR confirmed cross-linking between Cs and CA, while DSC suggested interactions between Cur-loaded micelles and the hydrogel matrix. Rheological analysis revealed gel-like behavior, with G' consistently higher than G, and temperature influenced hydrogel properties. SEM showed a denser network when Cur-loaded micelles were incorporated, slowing Cur release. At physiological pH (7.4), 75% of Cur was released after 7 days, while 84% was released at pH 5.5, showing pH-responsive behavior. Cytotoxicity tests showed over 80% viability of VERO CCL-81 cells (0.2-20 ppm hydrogel). This dual-encapsulation system provides a simple and effective platform for loading lipophilic drugs into pH-responsive hydrogels.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.