Lei Song, Ji Wang, Shibo Wang, Zongxiao Yang, Jianxin Su
{"title":"s型叶片垂直轴风转子性能的数值研究。","authors":"Lei Song, Ji Wang, Shibo Wang, Zongxiao Yang, Jianxin Su","doi":"10.1371/journal.pone.0322953","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional Savonius wind rotor has simple structure and can operate in any wind direction. However, its aerodynamic efficiency is lower than other types. A novel S-shaped wind rotor with three blades is proposed in order to improve the aerodynamic performance. The blade of the rotor is composed of two opposing convex circular arcs and its shape likes an 'S'. The flow characteristics of the rotor are studied and analyzed by computational fluid dynamics (CFD) numerical simulation method. The steady and transient performances are studied using SST k-ω model and sliding mesh method, and are compared with that of traditional Savonius rotors. The results show that the average static torque coefficient of the rotor is 0.291, which is higher than the 0.222 of the Savonius rotor. The static vibration amplitude of the rotor is 0.375, which is lower than 0.709 of the Savonius rotor. The maximum power coefficient of the rotor is 0.228, which is also higher than the 0.226 of the Savonius rotor. The dynamic vibration amplitude of the novel rotor is 0.183, which is lower than the 0.492 of the Savonius rotor. The flow field analyses show that structure of the S-shaped blades can smooth the flow field and reduce the blocking effect in the overlap area. The study indicates that the proposed navel rotor can not only overcome the problems of sharp change in the internal flow field of traditional Savonius rotors, but also provide better operating stability and higher wind energy utilization.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 5","pages":"e0322953"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study on performance of a vertical axis wind rotor with S-shaped blades.\",\"authors\":\"Lei Song, Ji Wang, Shibo Wang, Zongxiao Yang, Jianxin Su\",\"doi\":\"10.1371/journal.pone.0322953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional Savonius wind rotor has simple structure and can operate in any wind direction. However, its aerodynamic efficiency is lower than other types. A novel S-shaped wind rotor with three blades is proposed in order to improve the aerodynamic performance. The blade of the rotor is composed of two opposing convex circular arcs and its shape likes an 'S'. The flow characteristics of the rotor are studied and analyzed by computational fluid dynamics (CFD) numerical simulation method. The steady and transient performances are studied using SST k-ω model and sliding mesh method, and are compared with that of traditional Savonius rotors. The results show that the average static torque coefficient of the rotor is 0.291, which is higher than the 0.222 of the Savonius rotor. The static vibration amplitude of the rotor is 0.375, which is lower than 0.709 of the Savonius rotor. The maximum power coefficient of the rotor is 0.228, which is also higher than the 0.226 of the Savonius rotor. The dynamic vibration amplitude of the novel rotor is 0.183, which is lower than the 0.492 of the Savonius rotor. The flow field analyses show that structure of the S-shaped blades can smooth the flow field and reduce the blocking effect in the overlap area. The study indicates that the proposed navel rotor can not only overcome the problems of sharp change in the internal flow field of traditional Savonius rotors, but also provide better operating stability and higher wind energy utilization.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 5\",\"pages\":\"e0322953\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0322953\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0322953","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Numerical study on performance of a vertical axis wind rotor with S-shaped blades.
Traditional Savonius wind rotor has simple structure and can operate in any wind direction. However, its aerodynamic efficiency is lower than other types. A novel S-shaped wind rotor with three blades is proposed in order to improve the aerodynamic performance. The blade of the rotor is composed of two opposing convex circular arcs and its shape likes an 'S'. The flow characteristics of the rotor are studied and analyzed by computational fluid dynamics (CFD) numerical simulation method. The steady and transient performances are studied using SST k-ω model and sliding mesh method, and are compared with that of traditional Savonius rotors. The results show that the average static torque coefficient of the rotor is 0.291, which is higher than the 0.222 of the Savonius rotor. The static vibration amplitude of the rotor is 0.375, which is lower than 0.709 of the Savonius rotor. The maximum power coefficient of the rotor is 0.228, which is also higher than the 0.226 of the Savonius rotor. The dynamic vibration amplitude of the novel rotor is 0.183, which is lower than the 0.492 of the Savonius rotor. The flow field analyses show that structure of the S-shaped blades can smooth the flow field and reduce the blocking effect in the overlap area. The study indicates that the proposed navel rotor can not only overcome the problems of sharp change in the internal flow field of traditional Savonius rotors, but also provide better operating stability and higher wind energy utilization.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage