Eleanor C Warren, Andre E X Brown, Karen S Sarkisyan
{"title":"农杆菌遗传转化秀丽隐杆线虫的筛选条件及构建物。","authors":"Eleanor C Warren, Andre E X Brown, Karen S Sarkisyan","doi":"10.1371/journal.pone.0325060","DOIUrl":null,"url":null,"abstract":"<p><p>Manipulating gene expression within a model organism is important for reverse genetic experimentation, and while techniques to generate transgenic C. elegans are available, they are optimised for creating individual lines. The ability to create libraries of genetically modified animals using C. elegans as a model would make new types of experiments possible and would speed up studies of animal physiology. Here, we describe a range of constructs designed to establish a high-throughput method of C. elegans transformation mediated by gene transfer from Agrobacterium. We demonstrate that C. elegans are able to survive on Agrobacterium as a sole food source, and screen conditions for Agrobacterium-mediated transformation in this organism. While we do not achieve routine gene transfer from Agrobacterium to C. elegans, we suggest that this technique has potential following further optimization. The success of the approach would enable rapid and high-throughput transformation of C. elegans, providing an improvement on currently available methods. Here we provide details of optimization conditions tested, and a useful resource of T-binary constructs for use by the scientific community.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 5","pages":"e0325060"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12111652/pdf/","citationCount":"0","resultStr":"{\"title\":\"Screening conditions and constructs for attempted genetic transformation of C. elegans by Agrobacterium.\",\"authors\":\"Eleanor C Warren, Andre E X Brown, Karen S Sarkisyan\",\"doi\":\"10.1371/journal.pone.0325060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Manipulating gene expression within a model organism is important for reverse genetic experimentation, and while techniques to generate transgenic C. elegans are available, they are optimised for creating individual lines. The ability to create libraries of genetically modified animals using C. elegans as a model would make new types of experiments possible and would speed up studies of animal physiology. Here, we describe a range of constructs designed to establish a high-throughput method of C. elegans transformation mediated by gene transfer from Agrobacterium. We demonstrate that C. elegans are able to survive on Agrobacterium as a sole food source, and screen conditions for Agrobacterium-mediated transformation in this organism. While we do not achieve routine gene transfer from Agrobacterium to C. elegans, we suggest that this technique has potential following further optimization. The success of the approach would enable rapid and high-throughput transformation of C. elegans, providing an improvement on currently available methods. Here we provide details of optimization conditions tested, and a useful resource of T-binary constructs for use by the scientific community.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 5\",\"pages\":\"e0325060\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12111652/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0325060\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0325060","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Screening conditions and constructs for attempted genetic transformation of C. elegans by Agrobacterium.
Manipulating gene expression within a model organism is important for reverse genetic experimentation, and while techniques to generate transgenic C. elegans are available, they are optimised for creating individual lines. The ability to create libraries of genetically modified animals using C. elegans as a model would make new types of experiments possible and would speed up studies of animal physiology. Here, we describe a range of constructs designed to establish a high-throughput method of C. elegans transformation mediated by gene transfer from Agrobacterium. We demonstrate that C. elegans are able to survive on Agrobacterium as a sole food source, and screen conditions for Agrobacterium-mediated transformation in this organism. While we do not achieve routine gene transfer from Agrobacterium to C. elegans, we suggest that this technique has potential following further optimization. The success of the approach would enable rapid and high-throughput transformation of C. elegans, providing an improvement on currently available methods. Here we provide details of optimization conditions tested, and a useful resource of T-binary constructs for use by the scientific community.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage