利用多组学和机器学习解锁抗菌素耐药性。

IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Abhirupa Ghosh, Charmie K Vang, Evan P Brenner, Janani Ravi
{"title":"利用多组学和机器学习解锁抗菌素耐药性。","authors":"Abhirupa Ghosh, Charmie K Vang, Evan P Brenner, Janani Ravi","doi":"10.1016/j.tim.2025.04.017","DOIUrl":null,"url":null,"abstract":"<p><p>The global antimicrobial resistance (AMR) emergency is driven by complex and evolving molecular mechanisms. Cutting-edge machine learning methods and multiomics technologies can help to combat this crisis by predicting novel AMR biomarkers and outcomes with unprecedented precision and speed, offering critical insights into the molecular underpinnings of AMR.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking antimicrobial resistance with multiomics and machine learning.\",\"authors\":\"Abhirupa Ghosh, Charmie K Vang, Evan P Brenner, Janani Ravi\",\"doi\":\"10.1016/j.tim.2025.04.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The global antimicrobial resistance (AMR) emergency is driven by complex and evolving molecular mechanisms. Cutting-edge machine learning methods and multiomics technologies can help to combat this crisis by predicting novel AMR biomarkers and outcomes with unprecedented precision and speed, offering critical insights into the molecular underpinnings of AMR.</p>\",\"PeriodicalId\":23275,\"journal\":{\"name\":\"Trends in Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tim.2025.04.017\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tim.2025.04.017","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

全球抗菌素耐药性(AMR)紧急情况是由复杂和不断发展的分子机制驱动的。尖端的机器学习方法和多组学技术可以通过以前所未有的精度和速度预测新的AMR生物标志物和结果,为AMR的分子基础提供关键见解,从而帮助应对这一危机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unlocking antimicrobial resistance with multiomics and machine learning.

The global antimicrobial resistance (AMR) emergency is driven by complex and evolving molecular mechanisms. Cutting-edge machine learning methods and multiomics technologies can help to combat this crisis by predicting novel AMR biomarkers and outcomes with unprecedented precision and speed, offering critical insights into the molecular underpinnings of AMR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Microbiology
Trends in Microbiology 生物-生化与分子生物学
CiteScore
25.30
自引率
0.60%
发文量
193
审稿时长
6-12 weeks
期刊介绍: Trends in Microbiology serves as a comprehensive, multidisciplinary forum for discussing various aspects of microbiology, spanning cell biology, immunology, genetics, evolution, virology, bacteriology, protozoology, and mycology. In the rapidly evolving field of microbiology, technological advancements, especially in genome sequencing, impact prokaryote biology from pathogens to extremophiles, influencing developments in drugs, vaccines, and industrial enzyme research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信