从显微镜照片中鉴别病原酵母菌的完整迁移学习管道。

IF 3.3 3区 医学 Q2 MICROBIOLOGY
Ryan A Parker, Danielle S Hannagan, Jan H Strydom, Christopher J Boon, Jessica Fussell, Chelbie A Mitchell, Katie L Moerschel, Aura G Valter-Franco, Christopher T Cornelison
{"title":"从显微镜照片中鉴别病原酵母菌的完整迁移学习管道。","authors":"Ryan A Parker, Danielle S Hannagan, Jan H Strydom, Christopher J Boon, Jessica Fussell, Chelbie A Mitchell, Katie L Moerschel, Aura G Valter-Franco, Christopher T Cornelison","doi":"10.3390/pathogens14050504","DOIUrl":null,"url":null,"abstract":"<p><p>Pathogenic yeasts are an increasing concern in healthcare, with species like <i>Candida auris</i> often displaying drug resistance and causing high mortality in immunocompromised patients. The need for rapid and accessible diagnostic methods for accurate yeast identification is critical, especially in resource-limited settings. This study presents a convolutional neural network (CNN)-based approach for classifying pathogenic yeast species from microscopy images. Using transfer learning, we trained the model to identify six yeast species from simple micrographs, achieving high classification accuracy (93.91% at the patch level, 99.09% at the whole image level) and low misclassification rates across species, with the best performing model. Our pipeline offers a streamlined, cost-effective diagnostic tool for yeast identification, enabling faster response times in clinical environments and reducing reliance on costly and complex molecular methods.</p>","PeriodicalId":19758,"journal":{"name":"Pathogens","volume":"14 5","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114329/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Complete Transfer Learning-Based Pipeline for Discriminating Between Select Pathogenic Yeasts from Microscopy Photographs.\",\"authors\":\"Ryan A Parker, Danielle S Hannagan, Jan H Strydom, Christopher J Boon, Jessica Fussell, Chelbie A Mitchell, Katie L Moerschel, Aura G Valter-Franco, Christopher T Cornelison\",\"doi\":\"10.3390/pathogens14050504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pathogenic yeasts are an increasing concern in healthcare, with species like <i>Candida auris</i> often displaying drug resistance and causing high mortality in immunocompromised patients. The need for rapid and accessible diagnostic methods for accurate yeast identification is critical, especially in resource-limited settings. This study presents a convolutional neural network (CNN)-based approach for classifying pathogenic yeast species from microscopy images. Using transfer learning, we trained the model to identify six yeast species from simple micrographs, achieving high classification accuracy (93.91% at the patch level, 99.09% at the whole image level) and low misclassification rates across species, with the best performing model. Our pipeline offers a streamlined, cost-effective diagnostic tool for yeast identification, enabling faster response times in clinical environments and reducing reliance on costly and complex molecular methods.</p>\",\"PeriodicalId\":19758,\"journal\":{\"name\":\"Pathogens\",\"volume\":\"14 5\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114329/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/pathogens14050504\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pathogens14050504","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

致病性酵母菌在医疗保健领域日益受到关注,像耳念珠菌这样的酵母菌经常表现出耐药性,并在免疫功能低下的患者中造成高死亡率。需要快速和方便的诊断方法来准确鉴定酵母是至关重要的,特别是在资源有限的情况下。本研究提出了一种基于卷积神经网络(CNN)的方法,用于从显微镜图像中分类病原菌种类。利用迁移学习对模型进行训练,从简单的显微照片中识别出6种酵母,获得了较高的分类准确率(斑块级别为93.91%,整幅图像级别为99.09%)和低的跨物种误分类率,是表现最好的模型。我们的产品线为酵母鉴定提供了一种简化的、经济高效的诊断工具,在临床环境中实现更快的响应时间,减少对昂贵和复杂的分子方法的依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Complete Transfer Learning-Based Pipeline for Discriminating Between Select Pathogenic Yeasts from Microscopy Photographs.

Pathogenic yeasts are an increasing concern in healthcare, with species like Candida auris often displaying drug resistance and causing high mortality in immunocompromised patients. The need for rapid and accessible diagnostic methods for accurate yeast identification is critical, especially in resource-limited settings. This study presents a convolutional neural network (CNN)-based approach for classifying pathogenic yeast species from microscopy images. Using transfer learning, we trained the model to identify six yeast species from simple micrographs, achieving high classification accuracy (93.91% at the patch level, 99.09% at the whole image level) and low misclassification rates across species, with the best performing model. Our pipeline offers a streamlined, cost-effective diagnostic tool for yeast identification, enabling faster response times in clinical environments and reducing reliance on costly and complex molecular methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pathogens
Pathogens Medicine-Immunology and Allergy
CiteScore
6.40
自引率
8.10%
发文量
1285
审稿时长
17.75 days
期刊介绍: Pathogens (ISSN 2076-0817) publishes reviews, regular research papers and short notes on all aspects of pathogens and pathogen-host interactions. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信